CPAN: 18 ACC: 43

STATE OF WASHINGTON Booth Gardner, Governor

DEPARTMENT OF ECOLOGY Andrea Beatty Riniker, Director

Water-Supply Bulletin 53

Water in the Lower Yakima River Basin, Washington

By Dee Molenaar

Prepared in cooperation with the UNITED STATES GEOLOGICAL SURVEY

	• ,	

STATE OF WASHINGTON Booth Gardner, Governor

DEPARTMENT OF ECOLOGY Andrea Beatty Riniker, Director

Water-Supply Bulletin 53

WATER IN THE LOWER YAKIMA RIVER BASIN, WASHINGTON

By Dee Molenaar

Prepared cooperatively by the UNITED STATES GEOLOGICAL SURVEY

.

.

CONTENTS

Conversion table————————————————————————————————————	
Glossary———————————————————————————————————	
Purpose and scope of the study————————————————————————————————————	
Purpose and scope of the study————————————————————————————————————	
Previous investigations and reports————————————————————————————————————	
Acknowledgments	
Description of the area——————————————————————————————————	
Location and extent Topography and drainage	
Topography and drainage	
Climate Geologic setting	
Geologic setting	
Population	
Agriculture and irrigation development The hydrologic cycle	
The hydrologic cycle	
The hydrologic cycle	
Glaciers	
Talana familiana	
Lakes and reservoirs	
Streamflow	
Floods	
Canal diversions and return flows	
Water quality	
Data collection and analyses	
Suspended sediment	
Pesticides	
Trace elements	
Water-quality criteria	
Lake-water quality	
Ground-water resources	
Occurrence in geologic units	
Alluvium	
Ellensburg Formation	
Columbia River Basalt Group	
Structural control of ground-water movement	
Seasonal and long-term water-level changes	
Ground-water quality	
Areal development of ground water	
Data available	
Naches subarea	
Cowiche subarea	
Ahtanum subarea	
Moxee subarea	
Toppenish subarea	
Satus subarea	
Rattlesnake Slope subarea	
Hanford-Richland subarea	
Kennewick subarea	
Water use	

ILLUSTRATIONS

FIGURES 1-3.	Maps showing:
	1. Water Resources Inventory Areas of State and
	location of study area
	2. Physiographic features, streams, and towns in
	study area
	3. Areal distribution of mean annual precipitation, 1930-57
4-8.	Graphs showing:
	4. Relation of mean annual precipitation to altitude
	at selected weather stations
	Comparison of annual and mean annual precipita-
	tion at Rimrock-Tieton Dam and Yakima Airport,
	1960-77 water years
	Average monthly precipitation at Rimrock-Tieton
	Dam and Yakima Airport during 1960-77 water
	years compared to monthly precipitation during
	1977 drought water year
	7. Maximum snow depths recorded annually at
	selected snow courses, 1960-77 water years
	8. Mean monthly air temperatures at selected
_	weather stations
9.	
10.	
11.	Map showing areas of glaciers and perennial snow-
12.	Photograph of Council and Tietron Classics
13.	5 .
13.	storage reservoirs in the study area
14.	• • • • • • • • • • • • • • • • • • • •
14.	reservoirs
15.	
25.	streamflow-gaging stations
16.	Graph showing comparisons of annual precipitation at
	Yakima Airport, total stream inflow at selected
	sites, and total irrigation diversions during
	1960-77 water
17.	Graphs showing mean monthly values of precipitation
	at Yakima Airport, end-of-month contents of Rimrock
	and Bumping Reservoirs, total stream inflow at
	selected sites, and irrigation diversions during
	1960-77 water years, compared to monthly values
	during 1977 drought year
18.	
	flood, equaled during the flood of January 1974
19.	·
	sion canals, return-flow canals, and measuring
	s1tes

ILLUSTRATIONS--Continued

FIGURES 20	D-26.	Photographs showing:
		20. Roza Canal diversion at Roza Dam
		21. Roza Canal
		22. Reservation Canal diversion from Yakima River below Union Gap
		23. Sunnyside Canal diversion from Yakima River near Parker
		24. Satus No. 2 Pump Canal
		25. Chandler Power Canal diversion from Yakima River at Prosser Diversion Dam
		26. Richland Canal diversion at Horn Rapids Diversion Dam
	27.	•
	41.	Map showing sites for collection of water-quality
	28.	data from streams, canals, and drains
	20.	Graph showing downstream changes in selected water-
	29.	quality parameters, Yakima RiverGraph showing minimum, mean, and maximum values of
	29.	selected water-quality parameters at sites near mouths of streams tributary to the Yakima River,
		1974 irrigation season
	30.	Map showing locations of lakes at which water- quality data were collected
	31.	Map showing generalized geologic units
	32.	Photographs showing exposures of principal
	22	geologic units in study area
	33.	Map showing principal geologic structures and
	34.	generalized directions of ground-water movement
	J4.	Photograph showing typical flowing artesian well in 1897
	35.	<i>?</i> *
		Graph showing water-level fluctuations in selected wells, 1965-79
36	5-38.	Maps showing:
		36. Locations of wells providing water-level
		observations and water-quality data
		37. Numbers of recorded wells by township
		38. Subareas of ground-water development

TABLES

		Pag
TABLE 1.	Reports covering previous geohydrologic studies in the lower Yakima River basin	
2.		
3.	precipitation during 1910-77 water years	
J.	lowlands during 1960-77 water years, compared to monthly precipitation during 1977 drought water year	
4.	Mean monthy and annual air temperatures at selected weather stations during periods of record through 1976 water year	
5.	Discharge-measurement sites on streams and canals, and periods of record through 1977 water year	
6.	Annual discharges of Yakima River at Umtanum and at principal stream sites within study area above	
7.	diversion facilities, 1960-77 water years Mean monthly and annual discharges of Yakima River at Umtanum and of principal streams within study area above diversion facilities, 1960-77 water years,	
8.	compared to discharges during 1977 drought water years— Summary of available data on mean annual discharges at selected stream sites, and mean annual quantities and purposes of diversions from principal streams, 1960-77	
9.	water years	
10.		
11.	· · · · · · · · · · · · · · · · · · ·	
12.		
13.		
14.	Range in values of selected water-quality characteristics recorded at sites on streams and canals, April-October 1974 and 1976	
15.	Suspended-sediment concentrations and discharges at selected sites, 1976 irrigation season	
16.	Maximum concentrations of selected pesticides recorded at three sites	
17.	Maximum concentrations of selected trace elements recorded during 1974-75 water years	

TABLES--Continued

		·
TABLE	18.	Quality criteria for drinking water, for constituents analyzed in surface waters in the study area
	19.	
	20.	Water-quality criteria for irrigation, for constituents analyzed in the study area
	21.	Water-quality criteria for freshwater aquatic life, for constituents analyzed in the study area
	22.	Water-quality data from selected lakes in the study area-
	23.	Artesian wells with large flowing discharges or potentiometric heads
	24.	Highest and lowest static water levels recorded in observation wells in study area through 1977 water year
	25.	Water-quality data from selected wells in the study area, 1939-61
	26.	Water-quality data from selected wells, April 1976-April 1977
	27.	Summary of selected data from recorded wells, by subarea-
	28.	Snow depths and water equivalents at selected snow courses, 1960-77 water years
	29.	End-of-month contents of Bumping and Rimrock Reservoirs, 1960-77 water years
	30.	Municipal, industrial, and hydroelectric-power diversions, 1960-77 water years
	31.	Mean monthly irrigation-canal diversions from various streams, 1960-77 water years
	32.	Records of selected wells

CONVERSION TABLE

inch (in.) 25.4 millimeter (mm) 2.54 centimeter (cm)	
0.0254 meter (m)	
foot (ft) 0.3048 meter (m)	
mile (mi)	
square mile (mi^2) 2.590 square kilometer (km^2)	
acre 4047. square meter (m ²)	
acre-foot (acre-ft) 1233. cubic meter (m ³)	
cubic foot per second (ft^3/s) - 28.32 liter per second (L/s)	١
0.02832 cubic meter per second (m ³ /s	1
gallon per minute (gal/min) 0.06309 liter per second (L/s)	
gallon per minute per foot 0.2070 liter per second per meter [(gal/min)/ft] [(L/s)/m)	
micromho per centimeter 1.000 microsiemen per centimeter	
at 250 Celsius at 250 Celsius	
(umhos/cm at 25° C) (uS/cm at 25° C)	
ton, short 0.9072 megagram (Mg)	
degree Celsius ($^{\circ}$ C) F = $9/5^{\circ}$ C + 32 degree Fahrenheit ($^{\circ}$ F)	
degrees Fahrenheit (°F) 0.5559, degrees Celsius (°C)	
after	
subtracting	
32	

WELL- AND LOCATION-NUMBERING SYSTEM

Wells inventoried during this study (table 32 at end of report) have been assigned numbers identifying them by location within township, range, and section. For example, in the symbol 8/28-6Ml, the part preceding the hyphen indicates, successively, the township and range (T.8 N., R.28 E.) north and east of the Willamette base line and meridian. Because the study area lies entirely north and east of the base line and meridian, the letters indicating the directions north and east are omitted. The first number following the hyphen indicates the section (sec. 6), and the letter "M" gives the 40-acre subdivision of the section, as shown in the figure below. The numeral "I" indicates that this well is the first one inventoried within the subdivision.

		R	. 2	8 E	Ē.
	Τ.	D _.	С	В	А
8/28-6M1		E	F	G	Н
	ω / _z	M	L	K	J
	N.	N	· P	Q	R
	'	<u> </u>	Secti	on 6	

Locations of other sites and geographic features in the study area are similarly identified by this numbering system where necessary, but without the final numeral indicating sequence.

GLOSSARY

- acre-foot the volume of water required to cover 1 acre to a depth of 1 foot. Equivalent to 325,851 gallons.
- alluvium gravel, sand, silt, and clay that has been deposited by streams.
- anticline an upward fold in rock layer.
- aquifer water-saturated rock material capable of yielding water to wells
 and springs.
- artesian (hydraulically synonymous with "confined") in an artesian aquifer ground water is confined beneath an overlying stratum of lesser permeability, under sufficient pressure head to cause the water in a well to rise above the top of the aquifer tapped.
- <u>basalt</u> a generally dark, fine-grained extrusive igneous rock generally formed from a lava flow.
- conglomerate a sedimentary rock consisting of firmly cemented sand,
 gravel, and cobbles.
- consolidated rock earth materials such as gravel, sand, silt, and clay that have become firm and coherent rocks such as conglomerate, sandstone, siltstone, and claystone.
- eolian deposit fine-grained material (mostly silt) deposited by the wind.
- glaciolacustrine deposit material deposited by glacial meltwater streams into lakes along margins of glacier.
- igneous rock cooled and solidified rock formed from a melt (magma).
- infiltration the passage of water from the land surface into the ground.
- <u>lacustrine deposit</u> generally fine-grained material, such as silt and clay, deposited in a lake.
- loess fine-grained, dominantly silt-sized particles deposited by wind.
- metamorphic rock sedimentary or igneous rock altered by heat and pressure to attain a denser and generally more crystalline character.
- moraine glacial rock debris deposited by a glacier along its margins (lateral moraine) or at its terminus (terminal moraine).
- outwash rock material deposited by glacial meltwater streams, generally across a plain below the terminus of an advancing or receding glacier.

- permeability the relative ease with which water will flow through an aquifer.
- physiographic province a region or geographic entity of similar landform characteristics and climate, such as the Cascade Range, the Puget Trough, and the Columbia Plateau.
- potentiometric surface an imaginary surface joining the levels to which water rises in wells tapping an artesian (confined) aquifer.
- porosity the ratio of the total volume of openings (pore spaces) to the total volume of the material.
- pumice a highly cellular, light weight, light-colored material ejected
 from a volcano.
- recharge the process by which water is added to the aquifer, such as by percolation of precipitation and leakage from surface-water bodies and from overlying and underlying aquifers.
- sedimentary rock rock formed by deposition of rock particles or organic
 material by ice, water, or wind, and subsequent solidification
 through cementation or compression.
- syncline a downward fold in rock strata.
- topography the relief features or surface configuration of an area.
- unconfined aquifer an aquifer whose upper boundary is the water table, immediately above which the materials are similarly permeable but unsaturated.
- water table the surface of the saturated zone in an unconfined aquifer.
- <u>water year</u> The 12-month period beginning October 1 and ending September 30

		·	
		·	
		-	
•		,	
	·		

WATER IN THE LOWER YAKIMA RIVER BASIN, WASHINGTON

By Dee Molenaar

INTRODUCTION

Purpose and Scope of the Study

This report presents a compilation and general interpretation of hydrologic data collected in the lower Yakima River basin, one of the major Water-Resource Inventory Areas of the State of Washington. The report is one of a series prepared in cooperation with the State of Washington Department of Ecology (DOE) for use by Federal, State, County, and municipal agencies involved in the use and management of the State's land and water resources. This report also may serve as a guide to individuals and private companies interested in the local availability of surface and ground water and in the quality of the water.

The study included the assembly, compilation, and interpretation of available hydrologic information on the area. Although considerable data are available, some dating back to the mid- to late 1800's, most of the interpretations are based on data covering the 1960-77 water years; some later data for the period through 1979 are included. The data include records of precipitation (as rain and snow), storage of water in lakes and reservoirs, records of discharges of streams, canals, and drains, and related water quality, records of wells, drillers' logs of materials penetrated and water-yielding characteristics of aquifers tapped (as determined from pumping tests), and analyses of ground-water quality. Evaluation also was made of data of surface- and ground-water use for municipal, industrial, and irrigation supplies. This report also makes use of data presented in existing reports and interpretations of those data where pertinent.

Previous Investigations and Reports

The lower Yakima River basin has been of interest to investigators for many years and is the subject of numerous reports covering evaluation of its water resources and land use. In particular, many studies have been made in recent years of irrigation practices and of the quality of irrigation return-water flow. A summary of reports resulting from previous hydrologic studies in the basin is presented in table 1, along with the types of information and analyses covered. For a more complete bibliography of these reports (complete title, publisher, and number of pages), the reader is referred to the bibliography (p. 75-84).

In addition to the specific studies covered by the summary in table 1, reports and maps resulting from general statewide hydrologic-data collection and interpretive studies have included the lower Yakima River basin. These include the State geologic map (Huntting and others, 1961) and reports covering generalizations of ground-water occurrence in the Columbia River Basalt Group in eastern Washington (Newcomb, 1958a, 1961, 1961a, 1965), sediment transport by streams in the upper Columbia River basin (Nelson, 1974), data on lakes in Washington (Wolcott, 1964; Dion, 1978; Dion and others, 1976a, 1976b, 1976c), flowing artesian wells statewide (Molenaar, 1961), floods in Washington in January 1974 (Longfield, 1974), flood-discharge interpretations (Hulsing and Kallio, 1964; Cummans and others, 1975), stream temperatures (Collings and Higgins, 1973; Higgins and Hill, 1973), drainage areas of eastern Washington streams (Williams, 1964), 5-year water-use summaries (Laird and Walters, 1967; Parker, 1971; Dion and Lum, 1977), and statewide ground-water-quality data (VanDenburgh and Santos, 1965). A map report describing principal aquifers and well yields in the State (Molenaar and others, 1980) includes the study area. In addition, annual basic-data summaries of stream discharges, temperatures, and water quality, and of ground-water levels and quality have been published by the U.S. Geological Survey since the late 1800's.

Acknowledgments

The author acknowledges the assistance of individuals and agencies who provided much of the data forming the basis of this report. Onni Perala and Fred Nacke of the Yakima office of the U.S. Bureau of Reclamation provided computer printouts covering many years of monthly mean discharges of streams, canals, and irrigation return flows. Don Weaver of the Wapato Irrigation District provided similar data on the canals and drains in the Yakima Indian Reservation. Wilbert G. Gerlitz, Benton County Extension Agent, provided information on irrigation in Benton County.

TABLE 1.--Reports covering previous geohydrologic studies in the lower Yakima River basin

Subject	General basinwide	Parts of basin	Subject	General basinwide	Parts of basin
Streamflow-records evaluation	Kinnison, H.B., 1952		Geology and ground- water occurrence	Mundorff, M.J., 1953 U.S. Army Corps of Engineers, 1978 (vol. IV)	Foxworthy, B.O., 1962 (Antanum Creek basin) Newcomb, R.C., 1948
Effects of hydraulic and geologic factors on streamflow	Kinnison, H.B., and Sceva, J.E., 1963		Flowing artesian wells Test wells	Engineers, 1970 (1971 27)	(Kennewick area) Smith, G.P., 1901, (Lowe Naches, Cowiche, Antanum Moxee basins)
Surface-water quality	U.S. Army Corps of Engineers, 1978	· ·	Soils		Gregg, D.O., and Lum, W.E., II, 1973 (Dry Cree Satus basin)
Stream pollution	Washington Department of Health, 1936		•		Kocher and Straham, 1919 (Benton Co.) U.S. Dept of Agriculture, 1958 (Yakim
Irrigation	Kaatz, M.R., 1977 (effects of 1977 drought); U.S. Bureau of Reclamation, 1974	Benton County: Gerlitz, W.G., 1977			County) U.S. Dept of Agriculture, 1981 (Benton County) Pearson, H.E., 1977
Irrigation return flows (Water Quality)	Environmental Protection Agency, 1978; Stansbury, M., and Milhous, R.T., 1975; Sylvester, R.O., and Seabloom., R.W., 1962; U.S. Army Corps of Engineers.	King, L.G., Wattenburger, P.L., and Janke, A.C., 1977 (Sulphur Creek basin) Washington State Univ. Agricultural Engineering			(upper Satus basin) Hart, D.H., 1958 (Cold Creek basin) Newcomb, R.C., 1958 (Cold Creek basin)
	Vol. II, 1978; Washington State University Agriculture Research Center, 1972	Department, 1977 (Sulphur Creek basin)	General Water Resources	Flaherty, D.C., 1975 Pacific Northwest River Basins Commission, 1977 U.S. Army Corps of Engineers,	Gregg, D.O., and Laird, L.B., 1975 (Toppenish Creek basin) Molenaar, Dee, 1977
Lakes		U.S.Bureau of Reclamation and Fish and Wildlife Service, 1976 (Bumping Łake en- largement)		1975 (voi. I)	(Satus Creek basin) Mundorff, M.J., 1977 (Satus Creek basin) U.S. Geological Survey, 1975 (Toppenish Creek basin)
Supplemental Storage	U.S. Bureau of Reclamation, 1951		- Water budget	U.S. Army Corps of Engineers, 1978, (vol III)	-
dater-quality assess- ment	CH2M/Hill, 1977 (status report) McGaughy, D.M., and and Cunningham, R.K., 1973 Washington Department of	Fretwell, M.O., 1979 (Yakima Indian Reservation)	Water-resource manage- ment and planning	Milhous, R.T., 1975	
	Ecology, 1971, 1976		Model development and systems analysis	Mar, B.W., and Butcher, W.R., 1974 (macro model simulation)	
Sediment transport	Nelson, L.M., 1979 (irri- gation return flows)	Boucher, P.R., 1975 (Yakima Indian	•	Copp, H.D., and Higgins, D.T. (Hydraulics of surface-water	runoff) Report 17B
		Reservation irrigation return flows)		Thompson, G.T., 1974 (Irrigat agriculture water use)	ed Report 17C
•				Betchart, W.B., 1974 (Water-quality modeling) For 1 D 1974 (Forest Hydro	Report 17D
				Fox, J.D., 1974 (Forest Hydro model)	Report 17E
				Bell, M.C., and Mar, B.T., 19 (Fisheries)	Report 17F
				Butcher, W.R., and Huettig, G 1974 (Economic modeling)	Report 17G

DESCRIPTION OF THE AREA

Location and Extent

The lower Yakima River basin study area covers about 4,350 mi², about two-thirds of the entire Yakima River basin, in Yakima and Benton Counties in south-central Washington. As outlined in figure 1, the area includes all of Water Resources Inventory Areas (WRIA)¹ 37 and 38 and small areas in the eastern part of WRIA 31 and the southeastern part of WRIA 40. These areas in WRIA's 31 and 40 were included because of their close economic and cultural ties to the lower Yakima River basin.

In 1976 the Washington Department of Ecology divided the State into 62 Water Resource Inventory Areas, generally by river basins and subbasins or other geographic entities, for the purpose of designating areas for water-resources studies and water-management projections.

FIGURE 1 .- Water Resources Inventory Areas of State and location of study area.

Topography and Drainage

The study area (fig. 1) is characterized by a diversity of landforms that range from the high, rugged glaciated peaks and deep valleys of the Cascade Range on the west to the low ridges and broad lowlands of the Columbia Plateau on the east. The basin ranges in altitude from 8,184 ft at Gilbert Peak in the Goat Rocks Wilderness Area in the Cascade Range to about 340 ft at the Columbia River (Lake Wallula).

Between the Cascade Range and the Columbia River, the area is separated into several broad valleys by prominent east-west trending anticlinal ridges that, from north to south, include (1) the Cleman Mountain-Yakima Ridge, (2) Ahtanum Ridge-Rattlesnake Hills, (3) Toppenish Ridge, and (4) Horse Heaven Hills. From north to south the intervening valleys between the ridges contain the drainages of (1) the lower Naches River and Cowiche and Ahtanum Creeks and Moxee Valley, (2) Toppenish Creek, and (3) Satus Creek. The floors of these valleys slope gently toward the Yakima River and rarely are deeply cut by their streams. A minor topographic feature in the lower part of the Yakima Valley is Snipes Mountain, a low ridge that extends 8 mi along the north side of the Yakima River between the towns of Granger and Sunnyside.

The headwater areas of the Naches and Tieton Rivers, near the Cascade Range crest, contain many lakes. Most are small cirque lakes near timberline, but Bumping Lake on the Bumping River and Rimrock Lake (Tieton Reservoir) and Clear Lakes on the Tieton River have been artificially enlarged as reservoirs for flood-control purposes and for storage of irrigation water.

The Yakima River enters the study area at Selah Gap and then flows south, cutting through the Ahtanum Ridge-Rattlesnake Hills complex at Union Gap before flowing generally southeasterly to the town of Kiona. From there the river makes an abrupt turn to the north, cutting through the eastern part of the Rattlesnake Hills for about 10 mi before again flowing southeasterly to the river's junction with the Columbia River near Richland. Along its entire course through the study area, no natural perennial tributaries enter the river from its north side.

The Naches River (drainage area of about 1,100 mi²) flows southeasterly from its headwaters area near the Cascade Range crest to its confluence with the Yakima River, a distance of about 55 mi (fig. 2). Along its course, the Naches River is only 5 to 10 mi from its northeasterly drainage divide (the northern boundary of the study area), and only short tributaries enter the river from the north. Significant tributaries enter only from the south and drain a large area characterized by rugged ridges and peaks; above timberline these support small glaciers and snowfields. The principal tributaries and drainage areas, in downstream order, include Crow Creek (41 mi²); Bumping River (194 mi²),

which includes the American River drainage of 79 mi²; Rattlesnake Creek (134 mi²); Tieton River (296 mi²); and Cowiche Creek (120 mi²). All these streams are perennial and are maintained through the summer and early fall by snowmelt runoff; meltwater from glaciers in the Goat Rocks Wilderness Area also contributes to the flow of the Tieton River.

Downstream from its confluence with the Naches River, the Yakima River is joined from the west and south by several streams that drain the lower eastern slope of the Cascade Range. In downstream order, these perennial tributaries are Ahtanum Creek (173 mi²), Toppenish Creek (625 mi²), and Satus Creek (612 mi²).

FIGURE 2.—Physiographic features, streams, and towns in study area.

Climate

Data on precipitation and temperature in the study area were obtained from annual and monthly summaries of the U.S. Weather Bureau (1920-65), U.S. Department of Commerce (1965-73), and the National Oceanic and Atmospheric Administration (1974-77). For purposes of this study, the period of the 1960-77 water years was used as the basis for evaluating the relation between the various hydrologic characteristics in the basin.

The study area has a temperate to arid climate, with cold winters and warm summers. According to the precipitation map of the U.S. Weather Bureau (1965), the mean annual precipitation during the period 1930-57 ranged from about 110 inches in the Goat Rocks Wilderness Area at the Cascade Range crest to less than 10 inches in the Richland-Kennewick area (fig. 3). Table 2 presents data for annual and mean annual precipitation at three weather stations in the study area; these were selected as representative of the western mountainous area (Rimrock-Tieton Dam, 2,730-ft altitude), the central lowland (Yakima Airport, 1,064-ft altitude), and the eastern lowland (Prosser 4NE, 903-ft altitude). The data are summarized below for the 1960-76 water years and are compared with the annual precipitation during the 1977 drought water year:

]	?г	e	c	i,	Σį	ta	.ti	0	n
				-					

Station	Altitude (ft)	Water year 1960-76	Drought water year 1977
Rimrock-Tieton Dam	2,730	25.39	9.52
Yakima Airport————	1,064	7.79	4.39
Prosser————	903	7.5 l	4.88

Precipitation is greatest in the mountain station. Precipitation at Yakima is similar throughout the lower Yakima Valley (fig. 4). Precipitation varied widely from year to year (table 2 and fig. 5) for the stations at Rimrock-Tieton Dam and Yakima Airport during the 1960-77 water years. One of the greatest droughts in the State's history occurred during the 1977 water year. Some comparisons are made between the average values for 1960-76 and the values during 1977.

TABLE 2.--Annual precipitation at selected weather stations during 1960-77 water years, and maximum and minimum annual precipitation during 1910-77 water years

[Data from U.S. Weather Bureau, 1920-65; U.S. Department of Commerce, 1965-73; and (U.S.) National Oceanic and Atmospheric Administration, 1974-77.]

Water -	Inches o						
	Rimrock-Tieton Dam	Yakima Airport	Prosser 4NE				
1960	19,17	6.15	5.99				
61	29.08	10.47	12.47				
62	22.87	6.80	7.28				
63	25.80	8.47	8.58 5.24				
64	21,10	4.69					
1965	27.50	8.11	7.80				
66	19.02	7.38	5.31				
67	20.84	6.96	7.02				
68	25,17	6.35	4.68				
69	24.59	8.51	9.24				
1970	17.68	7.40	7.37				
71	26.78	8.36	8.11				
72	42.47	7.87	8,12				
73	14.04	4.55	4.73				
74	33.99	12.88	11.72				
1975	28.40	8.95	8.01				
76	33.18	8.27	5.99				
77	9,52	4.39	4.88				
Average 1960-77	24.51	7.60	7.36				
Maximum ann: (1910-77)	ual 44.22 (1934)	14.25 (1956)	12.76 (1941)				
Minimum ann: (1910-77)	ual 9.52 (1977)	4.12 (1917)	4.04 (1931)				

TABLE 3.--Mean monthly precipitation in the mountains and in the lowlands during 1960-77 water years, compared to monthly precipitation during 1977 drought water year

[Data from U.S. Department of Commerce (1960-70) and U.S. National Oceanic and Atmospheric Administration (1970-77)]

		Inches o	f Precipitation			
Mon th	Rimrock-Ti {altitude	ieton Dam	Yakima Airport (altitude 1,064 ft)			
	1960-77	1977	1960-77	1977		
October	1.89	0.61	0.55	0.07		
November	3.91	.65	.97	0.0,		
December	4.50	1.27	1.30	.07		
January	4.84	.22	1.24	.13		
February	2.67	1.07	.69	.69		
March	2.02	1.96	.64	.23		
April	1.39	.24	.48	.01		
May	.82	1.17	.43	.68		
June	.70	.66	.44	.46		
July	.36	.83	.16	(trace)		
August	.80	.84	. 42	1.16		
Septembe r		0	.27	.89		
Total	24.50	9.52	7.59	4,39		

Isohyet connecting points of equal precipitation, in inches. Interval is 10 inches except intermediate 5 inches interval as indicated by dashed lines.

FIGURE 3.—Areal distribution of mean annual precipitation, 1930-57. (From U.S. Weather Bureau, 1960).

FIGURE 4.—Relation of mean annual precipitation to altitude at selected weather stations.

FIGURE 5.—Comparison of annual and mean annual precipitation at Rimrock-Tieton Dam and Yakima Airport, 1960-77 water years.

The distribution of mean monthly precipitation (table 3) is shown graphically in figure 6 for the weather stations at Rimrock-Tieton Dam and Yakima Airport, which represent mountain and lowland precipitation patterns, respectively. Also shown for comparison is the monthly precipitation at these stations during the 1977 drought water year. Conditions were particularly severe during October 1976 - February 1977, when precipitation at Yakima Airport totaled only 0.96 inch, compared with the normal during that 5-month period of 4.98 inches. However, during May, August, and September of 1977, precipitation was 0.68, 1.16, and 0.89 inch, well above the normal for those months.

Much of the precipitation occurs as snow at the higher elevations during the winter months. Snow-depth and water-equivalent measurements made at six snow courses during 1960-77 water years are given in table 28 (at end of report). As shown in figure 7, snowfall is generally greatest at Morse Lake, and, during the 1960-77 water years, the maximum annual snow depths measured there ranged between 236 inches in 1971 and 72 inches in 1977. At the lower altitude Ahtanum Ranger Station (U.S. Forest Service) the maximum annual snow depths measured during the 1960-77 water years ranged from 47 inches in 1969 to 1 inch in 1977.

Temperatures show wide ranges throughout the study area. Mean annual temperature in the mountains, as recorded at Rimrock-Tieton Dam, is 44.2°F; mean monthly temperatures range from 25.5°F in January to 62.8°F in July (table 4). Mean annual temperature at Yakima Airport is 49.8°F, with mean monthly temperatures ranging from 27.5°F in January to 70.7°F in July. Temperatures in the eastern part of the lowland, as recorded at Kennewick, are 3 or 4 degrees higher than at Yakima. Comparisons of the mean monthly temperatures at these three stations are shown in figure 8.

TABLE 4.--Mean monthly and annual air temperatures at selected weather stations during periods of record through 1976 water year

[Data from U.S. National Oceanic and Atmospheric Administration (1977). Data from Rimrock-Tieton Dam station are incomplete in 1977, hence, the values given are for the period through 1976]

Station name	Number of years		Degrees Fahrenheit											
	_ *	Jan	Feb	Mar	Apr	May	June	July	Aug.	Sept	0ct	Nov	Dec	Average
Rimrock-Tieton Dam	60	25.5	31.4	35.1	42.4	49.9	56.3	62.8	61.7	55.8	45.6	35.1	28.9	44.2
fakima Airport	68	27.5	35.7	41.8	49.5	57.9	64.5	70.7	68.6	61.3	50.1	38.4	31.3	49.8
dapato	57	30.4	40.2	45.6	52.8	60.3	67.2	75.6	73.6	65.7	54.4	41.9	37.0	54.0
Sunnyside	81	30.5	37.9	44.0	51.9	60.0	66.5	72.0	70.0	63.2	52.0	37.4	33.8	51.9
Prosser 4NE	52	30.0	37.5	43.2	50.6	58.3	64.7	70.4	68.9	62.6	51.6	40.2	33.5	51.0
(ennewick	69	32.2	39.6	46.0	54.0	62.1	68.7	74.8	72.3	64.6	53.3	42.0	35.8	53.8
Maximum		32.2	40.2	46.0	54.0	60.3	67.2	75.6	73.6	65.7	54.4	42.0	37.0	
Minimum		25.5	31.4	35.1	42.4	49.9	56.3	62.8	61.7	55.8	45.6	35.4	28.9	
Difference	e	6.7	8.8	10.9	11.6	10.4	10.9	12.8	11.9	9.9	8.8	6.6	8.1	

FIGURE 6.—Average monthly precipitation at Rimrock-Tieton Dam and Yakima Airport during 1960-77 water years compared to monthly precipitation during 1977 drought water year.

FIGURE 7.—Maximum snow depths recorded annually at selected snow courses, 1960-77 water years.

FIGURE 8.—Mean monthly air temperatures at selected weather stations.

Geologic Setting

The study area is underlain by a great variety of consolidated rocks that range in age from Precambrian to Tertiary as well as unconsolidated materials and volcanic rocks of Quaternary age. These include metamorphic, sedimentary, and intrusive and extrusive igneous, rocks in the basin's headwater areas in the Cascade Range, and basalt lava flows and some interbedded weakly consolidated sediments in the central and eastern parts of the basin. Unconsolidated valley-fill materials—lacustrine deposits and alluvium—underlie the basin lowlands, and some eolian deposits occur locally along lower valley sides. Lava flows of Quaternary age occur in the headwater areas of the Toppenish Creek and Satus Creek subbasins.

The basalt lava flows and the valley-fill deposits are important to the occurrence of ground water in the study area. The basalt consists of a series of flows of Miocene age (between about 25 and 10 million years ago) that erupted from fissures in the central part of the Columbia Plateau. Individual flows are a few feet to more than 100 ft thick, and the total thickness of the basalt series is probably greater than 10,000 ft in the central part of the plateau. In the western marginal parts of the plateau—which include the study area — some of the upper basalt flows are locally interbedded with sediments (mostly sand, gravel, silt, and clay) that were eroded from the rising Cascade Range on the west and from several east—west trending ridges that formed from buckling of the basalt sequence.

Erosion by glacial ice and transport of the material by glacial meltwater streams resulted in the widespread deposition in the basin lowland of a thick sequence of sand and gravel and some finer materials. Subsequent formation in late Pleistocene time of large ice-dammed glacial lakes across lower parts of the Columbia Plateau resulted in the deposition of silt and clay beds in much of the lowland of the study area. After the lakes drained, the exposed fine sediments were subjected to wind erosion, causing some of the material to be transported to become eolian deposits, particularly over the lower eastern parts of the study area.

Present-day geologic activities in the study area include the slow but continuing erosion of the mountains by streams and small glaciers, and the associated deposition of the materials along stream channels and flood plains and in lowland lakes. Also, the 1980 eruption of the Mount St. Helens volcano in the Cascade Range to the west resulted in deposition of some ash over large parts of the study area.

Population

An estimate of the population of the study area is based on the total 1979 population of Yakima and Benton Counties less estimates of the population in those parts of the counties outside the defined study area. Those parts excluded are (1) the upper Klickitat River basin, (2) the south slope of the Horse Heaven Hills, and (3) the Selah area.

On the basis of the forgoing, and on population data provided by the Washington Office of Program Planning and Fiscal Management (1977), the population of the study area is calculated as follows:

Yakima County—————Benton County————	155,700 85,400
Subtotal	241,100
Less county population outside the study area—	- 4,300
Total	237,800

The total population of Yakima and Benton Counties has increased about 16 percent since 1960, when the population was about 207,200. About 60 percent of the population in the two counties is in incorporated areas, and the remainder is in unincorporated communities and on farms. The main population centers are the cities of Yakima (about 51,000 people in 1977) and the Richland-Kennewick areas (about 34,000 people in 1977). Other, smaller centers of population include Sunnyside, 7,600; Toppenish, 6,100; Grandview, 4,400; Prosser, 3,335; Wapato, 3,060; Union Gap, 2,630; Granger, 1,630; Zillah, 1,390; and Mabton, 1,108 (populations of 1977).

AGRICULTURE AND IRRIGATION DEVELOPMENT

The lower Yakima River basin is the most extensively irrigated area in Washington and one of the most important fruit-producing areas in the United States. The area irrigated in the study area is shown in figure 9. The study area ranks first in the nation in the production of hops. Other irrigated field crops include grapes, potatoes, corn, asparagus, mint, and alfalfa.

According to a historical summary by Flaherty (1975), the first irrigation began in 1867 with completion of the Nelson Ditch which diverted water from the lower Naches River a few miles west of its confluence with the Yakima River. The ditch still exists today as the Chapman-Nelson Canal, though carrying only a small amount of water.

Several larger canals were completed during the period 1880-1900. The Selah Valley Ditch Company's canal was the first of importance, carrying Naches River water from a point about 30 mi above its mouth. The Federal Reclamation Act of 1902 made possible the construction of Federal water-storage dams and canal systems and in 1905 Congress authorized the Yakima Federal Reclamation Project, to cover nearly one-half million acres in the Yakima River basin.

The first part of the basin to be covered by the reclamation project was the Sunnyside region, irrigated by the Sunnyside Canal completed in 1900. Additional facilities on the project were constructed later by the U.S. Bureau of Reclamation.

The area irrigated by the Tieton Irrigation Diversion Canal, completed in 1911, was the second to be covered under the Yakima Project. In 1927 the system's water supply was increased by completion of the Rimrock-Tieton Dam and reservoir. Included in the project is Clear Lake, also on the Tieton River, above Rimrock Reservoir; the lake's natural level was artificially raised by a low dam to provide a storage capacity of 5,300 acre-feet. The system now supplies water to about 27,000 acres of orchard land in the lower Cowiche Creek valley.

Bumping Lake on Bumping River, also artificially enlarged by an earthfill dam, has a storage capacity of 33,700 acre-feet. Studies are now (1981) underway to examine the feasibility of increasing the reservoir's capacity to about 460,000 acre-feet by construction of a higher dam downstream of the existing dam. Some of the advantages proposed include (1) fish and wildlife enhancement, (2) water for supplemental irrigation of Roza Division lands during periods of unusually low flow of the Yakima River, (3) additional storage capacity for flood control, and (4) additional recreational developments.

FIGURE 9.--Areas irrigated by canal systems.

The Wapato Irrigation Division diversion dam and canal system, developed to supply the Yakima Indian Reservation, were completed about 1908. The water is diverted from the Yakima River below Union Gap to the irrigation project. The Yakima Tribal Council is currently interested in constructing dams and reservoirs on Satus, Simcoe, and Toppenish Creeks for water to irrigate additional, higher land on the reservation.

An interesting aspect of the history of water use and treaty water rights on the Yakima Indian Reservation was the Ahtanum Creek case. In 1964, the U.S. Court of Appeals ruled that the Treaty of 1855 negotiated between Washington Territorial Governor Isaac Stevens and the Yakima Tribe took precedence over a later agreement entered into between the Indians and non-Indian farmers in Ahtanum Valley. The court held that any rights of the non-Indian farmers of the Ahtanum Irrigation District, in effect, the waters of Ahtanum Creek, were "subordinate to the rights held by the Indians on the Yakima Reservation." The court decreed that the Indians were to receive all the creek water after July 10 of each year. As a result, the non-Indian farmers on the north side of the creek (the channel center forming the northern reservation boundary) have drilled wells as a source of supplemental irrigation water.

The canal system of the Roza Irrigation Division was first put into operation in 1941 to provide for irrigation of about 72,000 acres above the Sunnyside Valley Canal, in an area extending 100 mi between Union Gap and Benton City. In the upstream reach of the Roza Canal near Yakima, some water is diverted for power generation.

Areas totaling nearly 20,000 acres in the eastern part of the study area, on the Kennewick slope (Kennewick east to the Columbia River), are irrigated by the Kennewick Canal. The water comes from the Chandler Power Canal at the powerhouse at Chandler; the power canal diverts water from the Yakima River at Prosser. Farther downstream, a few miles northwest of Richland, the Columbia and Richland Canals divert irrigation water from the river at the Horn Rapids diversion dam; these canals provide for irrigation of land along both sides of the lower reach of the Yakima River.

More than 30 smaller canals and irrigation districts exist throughout the study area, diverting directly from the several perennial streams. A few canals take water from larger canals for irrigation of small tracts of lower lands along the Yakima River.

THE HYDROLOGIC CYCLE

The hydrologic cycle is the pattern of water movement as it circulates through the natural system. It includes precipitation from the atmosphere to the earth, surface runoff and streamflow to lakes or the sea, percolation to ground-water bodies and seepage back to the surface, and evaporation and transpiration back to the atmosphere for continuation of the cycle. Figure 10 diagrammatically illustrates the hydrologic cycle as it applies to the lower Yakima River basin.

Precipitation as rain or snow is the source of all freshwater. A part of the precipitation on the land surface runs off rapidly to streams and lakes, a part soaks into the ground, and a part is evaporated directly back to the atmosphere from the soil and from streams, lakes, and plant surfaces. A part of the water entering the soil is drawn up by plants and returns to the atmosphere by transpiration from leaves; the combination of evaporation and transpiration is called evapotranspiration. A part of the water that enters the ground continues to percolate downward to a zone of saturation to become ground water. In turn, most of the ground water eventually returns to the surface by seepage to springs, lakes, streams, and the sea.

FIGURE 10.—The hydrologic cycle.

SURFACE-WATER RESOURCES

The Yakima River basin, though arid to semiarid in its agricultural lowland, is well endowed by the year-round availability of surface water in streams heading at snowfields and glaciers in the Cascade Range, principally the Yakima River, which enters the study area at Selah Gap, and the Naches River and its tributaries below the gap. The Yakima River's discharge is regulated upstream by storage dams and reservoirs in the upper Yakima River basin. Most of the discharge of the river from the upper basin to the lower basin is measured continuously at the stream-gaging station at Umtanum.

Glaciers

As shown in the map of figure 11, several glaciers exist in the study area, occupying cirques and upper slopes along the Cascade Range crest, all in the Goat Rocks Wilderness Area. Nearly all the glaciers are situated on the north and east sides of the crest, and their melt waters form the headwaters of the North and South forks of the Tieton River. As estimated from U.S. Geological Survey topographic maps (White Pass, 1962, 15-minute quadrangle, and Walupt Lake, 1970, 7-minute quadrangle), the glacier area encompassed during the dated surveys for those maps totaled about 1.3 mi².

The glaciers extend between altitudes of about 5,960 ft and 8,000 ft. According to the above-mentioned maps, supplemented by maps in a climbers guidebook to the southern Cascade Range (Beckey, 1973, p. 49), the glaciers include, from north to south, the McCall, Ives, Tieton, Conrad, and Meade Glaciers. According to the topographic maps noted above, these glaciers individually extend between the altitudes given below:

Glacier	Highest	Lowest	Approximate				
	altitude	altitude	area				
	(ft)	(ft)	(acres) (mi ²)				
McCall Ives Tieton Conrad Meade Unnamed	7,600 7,600 7,720 7,600 8,000	6,440 6,000 6,400 6,400 6,350 —	120 180 80 140 140 160	(0.19) (.28) (.13) (.22) (.22) (.25)			

During early summer the glacier ice normally retains some snow cover, but most of this melts away before the next winter's snowfall. The amount of snowpack remaining through the summer and fall eventually becomes part of the glacier mass. The photograph in figure 12 shows two glaciers in the study area under early fall conditions (October 1, 1958), when there was little remaining of the previous winter's snowpack.

FIGURE 11.—Areas of glaciers and perennial snowfields.

FIGURE 12.—Conrad (left) and Tieton (right) Glaciers.

Lakes and Reservoirs

The study area contains a large number of lakes and several reservoirs. Most lakes in the high mountains occupy glacier-carved cirques and steep-walled valleys. Lakes in the forested lower mountains are generally along valley bottoms and include three that have been artificially enlarged to become the area's principal reservoirs—Rimrock, Bumping, and Clear Lakes (fig. 13). Most lakes along the flood plain of the lower Yakima River are "oxbow" lakes, which mark curved segments of earlier channel positions. Many lakes in the agricultural lowlands are products of man's activities—farm ponds and reservoirs and some areas under water due to waterlogging from heavy irrigation. Several lakes along the Columbia River between Kennewick and Wallula Gap exist in small elongate basins created between the bluffs and railroad-grade fills.

Natural (undammed) lakes in the study area range in size from less than an acre to more than 100 acres. According to data provided by Wolcott (1964), the largest natural lake is 104-acre Big Twin Sisters Lake, at the 5,100-ft altitude near the Cascade Range crest in the upper Bumping River drainage. Wolcott's data show that four other natural lakes near the Cascade Range crest exceed 50 acres in area (Cougar Lake, 82 acres; Dog Lake, 60 acres; and Dewey and Swamp Lakes, each 52 acres).

The flood plain of the lower Yakima River contains several large oxbow lakes formed in river meanders. The largest oxbow lake is Griffin Lake (105 acres, less an 8-acre island; Wolcott, 1964), situated on the north side of the Yakima River near Sunnyside.

Analysis of Wolcott's data, which generally cover lakes 1 acre or more in extent, shows that the study area has about 220 lakes (and reservoirs) of 1 to 5 acres, 40 between 5 and 10 acres, 20 between 10 and 50 acres, and 15 greater than 50 acres. Of these, 11 are noted as reservoirs of 1 to 5 acres, and 3 are reservoirs of more than 250 acres. The locations of lakes and reservoirs in the study area are shown in figure 14.

FIGURE 13.—Rimrock (top) and Bumping (bottom) Lakes, the principal storage reservoirs in the study area.

FIGURE 14.--Areal distribution of lakes and reservoirs.

Streamflow

Stream discharges in the study area have been recorded over many years at continuous-record, miscellaneous-record, and crest-stage-data sites; the periods and types of records are summarized in table 5. The streamflow data were compiled from annual summaries of the U.S. Geological Survey (1961-64, 1964a, 1965-74a, 1975, 1976, and 1977) and the Washington Division of Water Resources (1953, 1964), and from computer-printout compilations by the U.S. Bureau of Reclamation (written commun., 1979).

Continuous records of stream discharges during the 1960-77 water years are available for only 10 stations in the study area (fig. 15). These include discharge records of the Yakima River at Umtanum, which, although recording discharges that are upstream of the study area and subject to large diversions in the upper Yakima River basin (Pearson, written commun., 1979), represents most of the river's direct inflow to the lower basin. Of the 10 stations, only 2 are on natural-flowing streams—the American River near Nile (site 3) and the combined discharges of the North and South Forks Ahtanum Creek (site 7)—and only 2 others are above diversion canals. For the 1960-77 water years, the annual discharges of the Yakima River at Umtanum and of the 4 stations situated on streams upstream of diversions are given in table 6, and annual and mean monthly discharges at the stations are presented in table 7.

Despite the controlled nature of the streamflows in the lower Yakima River basin, variations in annual discharges do occur in response to annual and seasonal variations in precipitation. This is shown graphically in figure 16 for the 1960-77 water years. Also shown are the total annual irrigation diversions during the same period. (The annual discharges are totals of discharges at sites that represent unregulated streamflow—those above significant canal diversions.)

Seasonal variations in mean monthly precipitation, streamflow, end-of-month contents of Rimrock and Bumping Reservoirs (table 29), and mean monthly irrigation diversions during the 1960-77 water years are compared with monthly values for the 1977 drought water year in figure 17. Of the four variables compared, variations in reservoir storage appear to exhibit the least change during the drought year.

Discharges of undiverted streams during 1977 totaled 62 percent of the average during the 1960-77 water years (table 6). By comparison, the Yakima River at Kiona, the farthest downstream gaging station and where the river has been most affected by upstream diversions, had a total 1977 discharge that was only 35 percent of the long-term (1960-77) average.

TABLE 5.--Discharge-measurement sites on streams and canals, and periods of record through 1977 water year

lo, i		Station	Period of	record	Drainage	Discharge (ft ³ /s)			
ig. 1	5 Station name	No.	Daily values, calendar years	Annual peak flows. water years	area (m1 ²)	Average	Maximum (date)	Minimum (date)	
1	Yakima R at Umtanum	12484500	1906-		1,594		41,000	138	
	McPherson Canyon Cr at Wymer	12484600		1952; 1955-	5.48		(11/15,16/06)	(10/3/15) 	
	Roza Cn1 (Yak Rdg Cn1) nr Moxee C1ty	12485000	1941- pub. with sta. 5050		1,802				
	Selah-Moxee Cnl nr Selah (N Yakima) Selah Creek:	12485500	1904-5; 1909-11						
	Selah Cr tr nr Yakima Wenas Creek: Pine Canyon nr Selah	12485700		1955-74	.68				
	Wenas Cr nr Selah	12485900	1000 1000	1961-76	2.26				
	Taylor Canal nr Selah	12486000	1909; 1910-12*		192				
	Yakima R at Selah Gap nr N Yakima	12486500 12487000	1905*; 1909-11 1897; 1904; 1905* 1911-12	 	2,135		 		
<u>:</u>	Naches River: Bumping River:		1911-12						
	Deep Cr nr Goose Prairie	32407400	,		•				
	Bumping Lake nr Nile	12487400 12487500	1006. 1000	1966-75	12.7				
2	Sumping R nr Nile	12487300	1906; 1909-		69.3				
	American R: Parkey Cr nr Nile	12488200	1906; 1909-	***	70.7	296	5,180 (12/29/17	0	
	American R tr nr Nile	12488300		1955-57 1955-74	.71				
3	American R nr Nile	12488500	1909-15; 1939-	1900~/4	1.10				
	Naches R at Anderson Ranch or Nile	12489000	1909-14		78.9	246	3,340 (12/4/75)	20(11/22/40	
	Naches R at Oak Flat or Nile	12489500	1904-17		394				
	Cty Yakima (Oak Flat) Divers. nr Naches	12489600	1929- pub with sta, 4940		641 		 		
	Selah Valley Canal nr Naches	12490000	1904; 1909-14; 1920- pub with sta 4940						
	N.F. Tieton R blw Clear Cr nr Naches Tieton River:		1914-15		61.5				
A	Rimrock Lk at Tieton Dam nr Naches		1925-		187				
4	Tieton R at Tieton Dam nr Naches Hause Cr nr Rimrock	12491500	1908-12; 1914; 1918-21; 1925-		187	507	8,450	0	
	Tieton Canal nr Naches	12491700		1955-	3.91			(4/4-6/30)	
5	Tieton R at Howks T Col or Naches	12492000	1910-						
•	Tieton R aby and blw Oak Cr nr Naches	12492500	1906-		239	569	8,910 (12/22/33)	0 (several)	
	Wapatox Canal nr Naches (N Yak)	12493000	1902-13		296				
		12493500	1904; 1905*; 1909-14; 1916- pub with sta 4940						
5 h	Vaches R blw Tieton R nr Naches	12494000	1905; 1908-		041				
	Naches Cn1 Co. (Gleed) Cn1 nr Naches	12494500	1904; 1905*; 1909-11		941 				
	Yakima Valley (congdon) cnl, Naches	12495000	1904; 1905+; 1909-11						
	Naches-Cowiche canal nr N Yakima	12495500	1904; 1905*; 1909-11					••	
	N. Yakima power cnl nr N Yakima	12496000	1904; 1905*; 1910						
	Schanno canal nr N Yakima	12496500	1904; 1905*; 1909-11						
	N Yakima power waste at N Yakima	12497000	1909-12						
	N Yakima Milling Co waste at N Yakima	12497500	1909-12						
	Old Union cal nr N Yakima	12498000	1904; 1905*; 1909-11						
	Naches Avenue Union cnl at N Yakima Naches R nr N Yakima	12498500	1910		1,106				
	NOCHES K DE N TAKIMA	12499000	1893-95*;						

TABLE 5.--Discharge-measurement sites on streams and canals, and periods of record through 1977 water year--Continued

Na 4-		Chahlan	Period of a	record	Drainage	Discharge (ft ³ /s)		
No. in ig. 15		Station No.	Daily values, calendar years	Annual peak flow water years	area s, (mi ²)	Average	Maximum (date)	Minimum (date)
	Moxee Co. canals nr N Yakima	12499500	1904; 1905*; 1909-11					
	Fowler canal nr N Yakima	12500000	1904; 1905*; 1909-11*					
	Firewater Canyon nr Moxee City	12500400		1964-	7.30			
	Yakima R abv Ahtanum Cr at Union Gap	12500450	1966-		3,479		28,200 (12/4/75)	565 (3/27/77
7	N.F. Antanum Cr nr Tampico S.F. Ahtanum Cr at Conrad Ranch,	12500500	1907-		68.9	.69.9	1,580 (1/15/74)	3.1 (11/27/7
	Tampico	12501000	1915-		24.8			
	S.F. Ahtanum Cr mr Tampico	12501500	1907*; 1908-14		28.5	19.9	1,230 (1/15/74)	2.4 (12/16/6
	Ahtanum Cr at Narrows nr Tampico	12502000	1908-13; 1960-68		119			
8	Ahtanum Cr at Union Gap nr Yakima	12502500	1904; 1907-08;					
			1909*; 1910-14;					
			1951-53: 1960-		173		3,100 (1/16/74)	0 (1904)
	Yakima R at Union Gap nr Yakima	12503000	(1893-94; 1895-96)*					
			1896-1914; 1963-64		3,652			
	New Reservation cml nr(at) Parker (Yak)	12503500	1904- pub with sta. 5050					
	Old Reservation cnl nr (at) Parker (WPT)	12504000	1904; 1905*; 1906- pub with sta 5050					
	Sunnyside cal ar Parker (Yakima WPT)	12504500	1904- pub with sta 5050					
9	Yakima R nr Parker (Wapato)	12505000	1908-		3,660		65,000(12/23/33)	0.6 (4/22, 6/11/77
	Reservation Drain at Alfalfa	12505500	1912-23					
	Toppenish Cr nr Ft. Simcoe	12506000	1909-24		122			
	Simcoe Cr blw Spring Cr nr Ft. Simcoe	12506500	1909-23		81.5			
	Toppenish Cr nr White Swan (Wapato)	12507000	1909-11; 1912*		370			
	Toppenish Cr tr nr Toppenish	12507300		1955-74	1.24			
	Toppenish Cr at Alfalfa Satus Creek: Shinando Cr:	12507500	1909-12		625			
	Shinando Cr tr nr Goldendale	12507600		1955-74	.38			
	Shinando Cr nr Goldendale	12507650		1953: 1955-59	7.94			~-
	Satus Cr tr nr Toppenish	12507660	- -	1953; 1956; 1961; 1963-	8.54			
	Satus Cr nr Toppenish	12508000	1908-13		271			
	Satus Cr blw Dry Cr nr Toppenish	12508500	1913-24		434	-,-		
	Yakima R tr nr Sunnyside	12508800		1954-73	1,91			
	Yakima River at Mabton	12508990	1970-		5,359		37,200 (1/17/74)	320 (3/25/77)
	Yakima R nr Mabton	12509000	1911-14		5,400			
	Yakima R near Prosser	12509500	1904-6; 1913-33		5,453			
	Kennewick Canal nr Chandler Snipes Cr:	12509600	1956- yrly div only w	ith sta 5105				
	Snipes Cr tr nr Benton City	12509800		1967-	5,18			
	Kiona Canal nr Kiona	12510000	1904; (1905; 1908- 09)*; 1910-11					
10	Yakima R at Kiona	12510500	1895*; 1896- 1915; 1933-		5,615		67,000 (12/23/33)	105 (9/11/06)
	Webber Canyon Cr nr Kiona Cold Creek:	12510600		1955-74	2.88			
	Cold Cr tr nr Priest Rapids	12510620		1967-75	.89			
	Yakima R tr nr Kiona	12510700		1955-74	3.35			
		12511000	1904; 1905*; 1910-11					
	Lower Yakima Canal nr Kiona	12511500	1905*; 1910-11					
		12512000	1906; 1907-8* 1909-11		6,155			

^{*}Gage heights, elevations, or gage heights and discharge measurements only.

Note: Station numbers are all U.S. Geological Survey stations except that marked "B," indicating U.S. Bureau of Reclamation number.

FIGURE 15.--Locations of selected continuous-record streamflow-gaging stations.

TABLE 6.--Annual discharges of Yakima River at Umtanum and at principal stream sites within study area above diversion facilities, during 1960-77 water years

[Data from U.S. Bureau of Reclamation (written commun., 1979)]

Site No. in	Station number	Station name and drainage area (mi ²)		Thousands of acre-feet						
fig. 15			1960	1961	1962	1963	1964	1965	1966	1967
1	12484500	Yakima River at Umtanum (1,594)	2,242	2,035	1,616	1,662	1,472	2,080	1,288	1,580
2	12488000	Bumping River near Nile (69.3)	236	250	186	180	209	216	158	205
3	12488500	American River near Nile (78.9)	172	202	143	160	164	177	136	173
4	12491500	Tieton River near Tieton Dam (187.0)	466	397	272	410	264	454	278	345
7	12502550	Combined flows of North and South Forks Ahtanum Creek (93.7)	54	77	55	71	46	68	5 1	71
		Totals	3,170	2,961	2,272	2,483	2,155	2,995	1,911	2,374
		Percent of average for 1960-77	116	108	83	91	79	110	70	87

Site No. in	Station number	Thousands of acre-feet									Percent ratio of 1977		
fig. 15		1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	Averagel	discharge to average
1	12484500	1,920	1,928	1,343	1,918	3,052	1,510	2,201	2,042	2,562	1,256	1,872	67
2	12488000	224	215	173	245	318	152	313	239	282	101	217	47
3	12488500	183	185	160	220	245	121	274	191	215	68	178	38
4	12491500	373	421	335	376	580	392	446	420	533	253	389	65
7	12502550	63	76	59	85	109	36	122	72	76	17	67	25
Totals		2,763	2,825	2,070	2,844	4,304	2,211	3,356	2,964	3,668	1,695	2,723	62
Percent average	of for 1960-77	101	103	76	104	158	81	123	109	135	62		

¹ Average may not agree with that in table 7 due to rounding.

TABLE 7.--Mean monthly and annual discharges of Yakima River at Umtanum and of principal streams within study area above diversion facilities, 1960-77 water years, compared to discharges during 1977 drought water years

[Data from U.S. Bureau of Reclamation	(written commun., 1979).	1977 discharges are given in parentheses.]
---------------------------------------	--------------------------	--

Site No. in	Station	Station name and drainage		•	•		Thousa	nds of a	cre-feet						
f1g. 15		area (mi ²)	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Mean annual]
1	12484500	Yakima River at Umtanum (1,594)	79.8 (92.3)	58.1 (30.5)	102.6 (32.1)	118.5 (41.6)	115.1 (31.8)	139.6 (33.3)	200.00 (102.6)	258.2 (150.7)	241.0 (174.6)	211.2 (233.6)	207.1 (206.0)	141.4 (126.7)	1,872.6 (1,255.3)
2	12488000	Bumping River near Nile (70.7)	10.3 (8.3)	9.6 (5.7)	15.8 (4.4)	13.5 (5.3)	10.9 (.6)	9.8 (.2)	11.0 (.7)	28.8 (19.7)	45.8 (19.5)	29.5 (7.3)	18.2 (16.2)	13.7 (12.6)	216.9 (100.5)
3	12488500	American River near Nile (78.9)	4.4 (3.3)	7.6 (3.7)	10.8 (2.9)	10.2 (3.1)	9.0 (2.7)	9.2 (2.9)	14.5 (10.2)	37.1 (12.5)	43.8 (16.8)	20.1 (4.2)	6.7 (2.7)	3.8 (3.3)	177.2 (68.3)
4	12491500	Tieton River at Tieton Dam near Naches (187)	12.7 (24.5)	5.0 (2.6)	10.4 (3.5)	10.9	8.7 (.2)	11.0 (.3)	31.7 (4.1)	42.6 (16.6)	49.5 (19.8)	66.5 (42.0)	76.2 (69.8)	64.6 (69.4)	389.8 (253.1)
7	12502550	Combined flow of North and South Forks Ahtanum Cree above diversions (93.7)	1.8 (2.0) ek	2.3 (1.8)	2.8 (1.5)	3.9 (1.1)	4.2 (1.3)	5.4 (1.3)	8.2 (2.1)	14.8 (2.2)	14.0 (1.7)	5.4 (.8)	2.5 (.7)	1.8 (.8)	67.1 (17.3)
		Totals	109.0 (130.4)	82,6 (44,3)	142.4 (44.4)	157.0 (51.4)	147.9 (36.6)	175.0 (38.0)	265.4 (119.7)	381.5 (201.7)	394.1 (232.4)	332.7 (287.9)	310.7 (295.4)	225.3 (212.8)	2,723.6 {1,694.5
Percent 1960-7	that 1977 7 average	total was of	119,6	53.6	31.2	32.7	24.7	21.7	45.1	52,9	59.0	86.5	95.1	94.5	62.2

lMean annual discharges may not agree with that of table 6 due to rounding.

FIGURE 16.—Comparisons of annual precipitation at Yakima Airport, total stream inflow at selected sites, and total irrigation diversions during 1960-77 water years.

FIGURE 17.—Mean monthly values of precipitation at Yakima Airport, end-of-month contents of Rimrock and Bumping Reservoirs, total stream inflow at selected sites, and irrigation diversions during 1960-77 water years (solid lines), compared to monthly values during 1977 drought year (dashed lines).

Floods

Floods have occurred along the principal rivers periodically, the larger ones usually resulting from a combination of heavy rainfall and warming temperatures with an accompanying rapid melting of the mountain snowpack. Although dikes and levees protect some reaches of the principal rivers against overbank flooding, unusually high discharges occasionally top the banks and inundate the flood plains. Several reports by the U.S. Army Corps of Engineers (1968, 1970, 1972, 1975) include maps of reaches of the Naches and Yakima Rivers that are subject to flooding during a 100-year flood, a flood of magnitude that on the average will occur once in 100 years. Areas covered by water in the Toppenish Creek and Satus Creek basins during the flood of January 1974 were mapped by the U.S. Geological Survey (1975).

The above-noted areas subject to flooding in the study area are shown in figure 18. Such areas include those along the Naches River near Naches; along the Yakima River between Yakima and Union Gap, between Parker and Mabton, and in the West Richland-Richland area near the river's mouth; and along Toppenish and Satus Creeks.

The annual peak flows at selected long-term gaging stations, for the period 1960-77, are given below:

Station name			Thous	ands of	cubic fe	et per s	econd		
and number	1960	1961	1962	1963	1964	1965	1966	1967	1968
Yakima R. at Umtanum (12384500)	19.0	8.6	8,12	6,77	5,77	11.7	4.43	6.44	8,60
Bumping R. near Nile (12488000)	1.15	1.61	.863	1.10	1.68	.802	1,02	1.27	1.15
American R. near Nile (12488500)	1.08	1,84	.792	1.09	1.45	1.06	1.75	1,53	2.84
Tieton R. at Tieton Dam near Naches (12491500)	2.08	2.32	1.42	1.94	1.23	2.36	1.49	2.44	1.82
Naches R. below Tieton R. near Naches (12494000)	9.12	7.24	3.89	5.25	5,15	6.25	6.04	6.70	5,10
Ahtanum Cr. at Union Gap (12502500)	.025	.397	.303	1.34	.408	.798	.260	.386	.449
Yakima R. near Parker (12505000)	27.4	12.2	10.7	15.6	6.77	22.9	6.52	9.90	14.3
Yakima R. at Kiona (12510500)	18.7	13.0	11.3	13.5	8.68	22.4	6,82	10,5	15.2

Station name			Thous	ands of	cubic fe	et per s	econd		
and number	1969	1970	1971	1972	1973	1974	1975	1976	1977
Yakima R. at Umtanum (12384500)	7.99	4.20	9.11	11.7	5.05	10.9	8.44	16.6	4.13
Bumping R. near Nile (12488000)	1.18	1.55	1.09	2.24	.712	2.78	1.53	1.34	7.01
American R. near Nile (12488500)	1.65	2.10	1.43	2.05	1.77	3,24	1.91	3.34	.625
Tieton R. at Tieton Dam near Naches (12491500)	2.38	1.60	1.62	2.52	1.84	4,02	2.52	2.56	1.71
Naches R. below Tieton R. near Naches (12494000)	8.10	6.76	8.75	10,1	3.47	12.8	7.21	14.1	1.55
Ahtanum Cr. at Union Gap (12502500)	.460	.316	.448	.660	.240	.310	.452	. 596	.050
Yakima R. near Parker (12505000)	12.6	5.86	14.2	20,2	8.94	28.0	11.3	26.7	3.23
Yakima R. at Kiona (12510500)	14.4	8.28	14,4	20.2	8.61	39,7	12.9	28.3	3,41

FIGURE 18.—Maximum areas inundated during a 100-year flood, equaled during the flood of January 1974.

Canal Diversions and Return Flows

The study-area lowland contains a complex system of streamflow diversion points, canals, and return-flow drains and wasteways. Most of the diversions are for irrigation, but a few are for electric-power generation and municipal and industrial supplies. The relative positions of all significant diversion points on the streams are shown diagrammatically in figure 19, and photographs of diversion points of selected canals are shown in figures 20-26. Diversion and discharge data collected by the U.S. Bureau of Reclamation and the Wapato Irrigation District (written commun., 1979) are presented in the basic-data tables at the end of the report. Included there are monthly and annual data covering the 1960-77 water years for municipal, industrial, and hydroelectric power diversions (table 30) and irrigation diversions (table 31).

The irrigation system includes canal diversions directly from the basin's streams and intercanal diversions—those made from the Roza, Sunnyside, and Reservation Canals to those serving small irrigation districts. The numbers of diversion points on the principal streams and the mean annual quantities diverted from each stream for irrigation, power generation, and municipal and industrial supplies are summarized in table 8.

TABLE 8.--Summary of available data on mean annual discharges at selected stream sites, and mean annual quantities and purposes of diversions from principal streams 1960-77 water years

[Data from U.S. Bureau of Reclamation (written commun., 1978). Values are rounded to three significant figures, except those less than 10]

		Thousands	of acre-f	eet (rounded)	
Stream site	Mean annual discharge	Irrigation	Power	Municipal and industrial	Total diversions
Yakima River at Umtanum	al,870	1,750	1,180	9.2	2,940
Naches River near Naches	a893	167	273	9.1	449
Tieton River near Tieton Dam	a390	102			102
North and South Forks Ahtanum Cr above diversions	.7	15.6			15.6
Simcoe Creek		3.4			3.4
Toppenish Creek	b,6	574			574
Satus Creek	b _{1.1}	21.5			21.5
Totals (rounded)	3,150	2,630	1,450	18.3	¢4,110

aFor period 1960-77.

bFor period 1960-75.

CTotals of column and row do not match, due to rounding.

FIGURE 19.—Relative positions of streams, diversion canals, return-flow canals, and measuring sites.

FIGURE 20.—Roza Canal diversion at Roza Dam on Yakima River.

FIGURE 21.--Roza Canal.

FIGURE 21.--Roza Canal--Continued

FIGURE 22.—Reservation Canal diversion from Yakima River below Union Gap.

FIGURE 23.—Sunnyside Canal diversion from Yakima River near Parker.

FIGURE 24.—Satus No. 2 Pump Canal.

FIGURE 25.—Chandler Power Canal diversion from Yakima River at Prosser Diversion Dam.

FIGURE 26.--Richland Canal diversion at Horn Rapids Diversion Dam.

A comparison was made of the relations between the mean annual precipitation at the Yakima Airport (table 2), stream inflow to the study area at selected sites (table 6), end-of-month reservoir contents (table 9), and diversions from the principal canals (table 10) during the period 1960-77 and during the 1977 drought water year. As given in table 10 and shown graphically in figure 17, the great variations in precipitation and stream inflow were not reflected by significant changes in irrigation diversions during the same years. Although total recorded streamflow during the 1977 drought water year was 62 percent of the average during the 1960-77 water years, the total irrigation diversion during 1977 was 91 percent of the average for the 1960-77 period.

Mean annual diversions by individual canals during the 1960-77 water years are compared with diversions during the 1977 drought water year in table 11.

TABLE 9.--Mean monthly end-of-month contents of Rimrock and Bumping Reservoirs during 1960-77 water years and monthly end-of-month contents during 1977 drought water year

[Data from U.S. Bureau of Reclamation (written commun., 1979). See table 29 at end of report.]

Reservoir	Period (water		End-of-mo	onth rese	rvoir co	ntents,	in thous	ands of	acre-fee	t			
capacity	years)	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept
Rimrock (198,000 acre-ft)	1960 -77 1977	69.2 92.1	84.9 101.6	100.0 108.7	116.6 120.1	132.5 129.8	144.6 140.0	144.3 154.9	164.2 162.2	189.3 175.5	165.6 149.9	114.3 99.2	64.1 45.6
	Pct 1977 of 1960-77	133.1	119.7	108.7	103.0	98.0	96.8	107.3	98.8	92.7	90.5	86.8	72.7
Bumping (33,700 acre-ft)	1960-77 1977	4.8 5.7	7.1 4.8	6.8 4.7	7.9 4.4	9.1 9.3	9.7 13.6	13.7 26.8	26.4 35.1	32.9 34.3	27.7 31.4	17.3 18.3	8.4 10.4
	Pct 1977 of 1960-77	118.8	67.6	69.1	55.7	102.2	140.2	195.6	133.0	104.3	_113.4	105.8	123.8
Total of both reservoirs (231,700 acre-ft)	1960 -77 1977	74.0 97.8	92.0 106.4	106,8 113,4	124.5 124.5	141.6 139.1	154.3 153.6	158.0 181.7	190.6 197.3	222.2 209.8	193.3 181.3	121.6 117.5	72.5 57.0
	Pct 1977 of 1960-77	132.2	115.7	106.2	100	98.2	99.5	115.0	103.5	94.4.	93.8	96.6	78.6

TABLE 10.--Stream inflow to study area at selected sites, and total recorded irrigation-canal diversions, 1960-77 water years

[Data from U.S. Bureau of Reclamation and Wapato Irrigation District (written commun., 1978)]

	Thousand	is of acre-feet	Percentage of recorded diver-
Water year	Stream inflow	Irrigation-canal diversions	sions to recorded stream inflow (rounded to pct)
1960	3,170	2,256	71
1961	2,961	2,219	75
1962	2,272	2,325	102
1963	2,483	2,138	86
1964	2,155	2,341	109
1965	2,995	2,296	77
1966	1,911	2,305	121
1967	2,374	2,297	97
1968	2,763	2,323	84
1969	2,825	2,179	77
1970	2,070	2,243	108
1 971	2,844	2,226	78
1972	4,304	2,257	52
1973	2,211	2,218	100
1974	3,356	2,224	66
1975	2,964	2,206	74
1976	2,668	2,281	62
1977	1,995	2,245	113
Avera	ge 2,723	2,254	83

TABLE 11.--Mean annual diversions by irrigation canals during 1960-77 water years compared to diversions during 1977 drought water year

[Data from U.S. Bureau of Reclamation (written commun., 1979), except those covering Yakima Indian Reservation, which are from Wapato Irrigation District (written commun., 1979). Yalues are rounded to nearest 100 acre-ft.]

USBR station		Thousand of acre-feet1		1977
No. in	Canal name	Average		Percent of
figure 19		1960-77	1977	1960-77
From Tieto				
40001	Tieton Canal	98.1	97.9	99.8
38003	Cobb Upper Side Canal	.5	.3	60.0
38002 38001	Sinclair and Cobb Canal Tenant Canal	.9 2.0	1.0	111.1
		2.0	2.0	100
From Nache 34001	es River: Emerick Canal	.5	.3	60.0
34002	Anderson Canal	1.6	1.4	87.5
33005	Nile Ditch Assn. Canal	4.2	3.8	90.5
33003	Carmack and Parker Canal	1.2	1.1	91.7
33004	Frederick and Hunting Canal	.8	.6	75.0
33002	Stevens Canal	2.6	2.6	100.0
33001 31001	Naches-Selah Canal	45.1	51.4	·· 114
30013	Wapatox Irrigation Canal Foster-Naches Canal	7.7	6.8	88.3
30012	Clark Canal	1.0 1.2	1.2 1.0	120.0 83.3
30011	South Naches Channel Canal	21.7	27.5	126.7
30010	Kelley and Lowry Canal	6.8	6,1	89.7
30008	Gleed Canal	17.7	14.7	83.1
30007	Morrissey Canal	1.7	.9	52.9
30006	Congdon Canal	16.5	18, 1	110
30005	Chapman and Nelson Canal	4.7	.8	17.0
30004 30003	Naches-Cowiche Canal City of Yakima Irrigation Canal	10.7	10.0	93.5
30002	Fruitvale Canal	10.6 15.7	9.6 12.4	90.6
30001	Old Union Canal	11.3	7.7	79.0 68.1
rom Yakin	na River:			
13001	Roza Canal at 11.0 mile	356.5	274.8	77.1
11002	Selah-Moxee Canal	24.5	26.1	106.5
0007	Moxee Co. Canal	4.6	3.2	69.6
0006	Hubbard-Granger Canal	10.8	. 11.4	105.6
10005	Union Gap Canal	17.9	19.8	110.6
10004 10003	Richartz Canal Blue Slough Canal	5.4 5.6	3.6 5.6	66.7 100.0
From Ahtar	num Creek:			
502551	Ahtanum Main Canal	13.7	3.5	25 5
502552	Ahtanum Low Canal	1.9	.6	25.5 31.6
From Yakin	na River:			
10002	Reservation Canal (Old and New)	644.0	607.1	94,3
10001	Sunnyside Canal	441.7	402.7	91.2
08001	Snipes and Allen Canal	8.4	7.6	90.5
	enish Creek:			
506001	Toppenish Feeder Canal	17.0	12.1	71.2
506002 506003	Satus East Lateral Canal Satus 2 Pump Canal	45.5	42.2	92.7
06004	Satus West Lateral Canal	96.5 8.2	109.2 7.9	113.2 96.3
From Satus				
506006	Satus Feeder Canal	21.5	24.7	114.9
From Simco	oe Creek: Simcoe Creek Canal	3,4	1.0	20.4
		3,4	1.0	29.4
From Yakin 03001	na River: Kennewick Canal (via Chandler	98.3	94.6	96.2
	Power Canal)		J710	30.2
2001	Kiona Canal	12.9	12.5	96.9
01004	Richland Canal	32.3	31.3	96.9
01003	Columbia Canal	85.5	86.1	100.7
	Totals	2,240,9	2,066.8	92.2

Rounded to one decimal point (100 acres).

Water Quality

Data Collection and Analyses

The quality of water in streams, irrigation canals, and return-flow drainage canals in the lower Yakima River basin, along with that in lakes and reservoirs in the area, has been the subject of much analysis and of many previous studies and reports (table 1). The most complete data—those covering the principal chemical constituents and daily water temperatures—have been collected from the Yakima River at Kiona (station 12510500) since the 1952 water year. Data from other sites on the Yakima River and its major tributaries were collected for various purposes and with increasing coverage, as summarized in table 12 for the 79 sites shown in figure 27.

Water-quality data collected through 1963 included those covering the principal chemical constituents, specific conductance, pH, and temperature, but in 1964 microbiological data were included from nine stations. A study of surface-and ground-water quality in the Yakima Indian Reservation in 1973-74 resulted in collection of similar data at 18 streams and canal sites on the reservation (Fretwell, 1979); a total of 38 stations in the study area provided chemical and microbiological data in the 1974 water year. In 1976 a study of water quality in the Sulphur Creek basin (P. R. Boucher, written commun, 1979) added data from 16 stations on major canals and drains.

Data collected during studies of suspended-sediment transport in the area include those in reports covering the upper Columbia River basin (Nelson, 1974), the study area in general (Nelson, 1979a), and the Yakima Indian Reservation (Boucher, 1975; Nelson, 1979b). The report on water quality in the Sulphur Creek basin by P. R. Boucher (written commun., 1977) includes suspended-sediment data collected from 3 sites in 1975, 34 sites in 1976, and 7 sites in 1977.

Data for pesticides analysis were collected at only 3 sites, and trace-element data were collected from 9 sites (table 12).

The physical, chemical, and biological quality of surface water in the lower Yakima River basin is altered significantly as it discharges from the mountainous upper reaches of the basin's streams and passes through the basin lowland to the Columbia River. As the water moves through the complex system of irrigation and return-flow canals, the heavy influence of man's agricultural activities—cultivation of the land, fertilizing of the crops, and spraying of pesticides—has its effects on water quality.

FIGURE 27.—Sites for collection of water-quality data from streams, canals, and drains.

Interpretations of water-quality changes throughout various parts of the basin have been given in previous reports (noted above and in table 1). For the purpose of this report, a summary of the minimum, mean, and maximum values of various water-quality data collected basinwide during the 1974 irrigation season (April-October)—the year of the most comprehensive data collection effort—and during the 1976 irrigation season in the Sulphur Creek basin is presented in table 13. The minimum and maximum values recorded for each parameter and the sites with the maximum values are given in table 14.

The changes in selected water-quality characteristics throughout the lower Yakima River basin were determined from the data collected at 36 sites (fig. 27) during the 1974 irrigation season. The properties selected include concentrations of nitrite plus nitrate, ammonia nitrogen, total phosphorus, dissolved orthophosphate phosphorus, and dissolved oxygen, along with specific conductance and water temperature. The downstream changes in these properties in the Yakima River mainstem are shown graphically in figure 28.

Water-quality data also were collected at the beginning and end of the 1974 irrigation season from streams, canals and drains in basins tributary to the Yakima River. Minimum, mean, and maximum values of data collected on a more frequent basis near the mouths of the tributaries—near points of discharge to the Yakima River—are shown graphically in figure 29. The data sites are shown relative to approximate discharge points along the Yakima River, in river miles above its mouth.

Suspended Sediment

Studies of suspended-sediment concentrations and yields in irrigation return flows during the 1975-76 irrigation seasons provided data from 10 sites on the Yakima Indian Reservation (Nelson, 1979b) and 21 sites in the remainder of the lowland (Nelson, 1979a). The data collected in 1976 (table 15) show that annual sediment discharge in drains ranged from 250 tons from the Wamba Drain (site 73, fig. 28) to 65,000 tons from the Sulphur Creek Wasteway (site 69). Sediment discharges in the Yakima River ranged from 89,000 tons at Union Gap (site 24) to 152,000 tons at Kiona (site 78). Discharges from tributary streams ranged from 400 tons in Wide Hollow Creek (site 23) to 10,000 tons in Spring Creek (site 75).

FIGURE 28.—Downstream changes in selected water-quality parameters, Yakima River.

FIGURE 29.—Minimum, mean, and maximum values of selected water-quality parameters at sites near mouths of streams tributary to the Yakima River, 1974 irrigation season.

Pesticides

Data collected infrequently at only three sites indicated zero or low concentrations of most pesticides. The maximum concentrations of selected constituents (table 16) show that the water-quality criteria for maintenance of healthy aquatic life (table 21) were exceeded only in the concentration of DDT and lindane, at sites 64 (DID 18 Drain at Sunnyside) and 78 (Yakima River at Kiona).

Trace Elements

Sampling for concentrations of selected trace elements during the 1974-75 water years provided data from 14 sites (table 17, fig. 28). Water-quality criteria vary considerably among different species of aquatic life, however, and the reader is referred to the report by the U.S. Environmental Protection Agency (1977) for pertinent information.

Water-Quality Criteria

The water-quality data presented in tables 13, 14, 16, and 17 may be evaluated against criteria for drinking water supplies in table 18, for certain industrial uses in table 19, for irrigation in table 20, and for freshwater aquatic life in table 21.

Lake-Water Quality

Data collected for determining selected water-quality characteristics of nine lakes in the study area (fig. 30) are summarized in table 22. These data are from reports by Dion and others (1975a, 1976b) that resulted from a 1974 reconnaissance survey of lakes in Washington that evaluated existing conditions and provided a data base for studies of future changes in lake-water quality.

FIGURE 30.-Locations of lakes at which water-quality data were collected.

GROUND-WATER RESOURCES

Occurrence in Geologic Units

Ground water in the study area occurs principally in the (1) unconsolidated alluvial sand and gravel of Quaternary age, (2) partially consolidated sand, silt, and gravel, and consolidated sandstone, siltstone, and conglomerate of the Ellensburg Formation of middle and late Miocene age, and (3) basalt lava flows and associated sedimentary interbeds of the Columbia River Basalt Group of Miocene age. A fourth unit, composed mostly of andesitic lava flows of late Tertiary and early Quaternary age, may be an aquifer, but well data are too sparse to confirm the possibility.

The areal distribution of the geologic units in the study area is shown in figure 31, and examples of surface exposures of the Ellensburg Formation and basalt are shown in the photographs of figure 32. Included on the map are areas underlain by the poorly permeable and non-productive older bedrock and some younger volcanic rocks, in the Cascade Range in the western part of the area.

Alluvium

The alluvium of Quaternary age is composed of unconsolidated sedimentary material deposited by streams along their channels and flood plains. The predominant materials are sand, gravel, and cobbles, with minor admixtures of silt and some clay and marsh deposits. In the study area the deposits range in known thickness from a few feet to more than 150 ft. As shown in figure 31, the principal areas of occurrence are along the flood plains of (1) the Yakima River between Yakima and Union Gap, between Parker and Prosser, and in the West Richland-Richland area, (2) the lower Naches River between Naches and Yakima, and (3) the lower reaches of Ahtanum, Toppenish, and Satus Creeks.

The alluvium is generally permeable and contains ground water under unconfined (water-table) conditions, with the water table at or near the level of the adjacent stream. Shallow drilled or dug domestic and stock wells readily obtain water from layers of gravel and coarse sand in the alluvium. However, because few homes are situated directly on the alluvial flood plains, ground-water development from the alluvium is minimal. Also, the few wells drilled into these materials are commonly completed at greater depth, to tap the underlying coarser, partly consolidated sand and gravel of the Ellensburg Formation, or the deeper, more productive basalt aquifer. Pumping yields of most wells finished in sand and gravel units of the alluvium are 10 to 20 gal/min (gallons per minute), which is adequate for domestic and stock supplies.

FIGURE 31.-Generalized geologic units.

Touchet Beds overlying Ellensburg Formation

Ellensburg Formation

Basalt of Columbia River Basalt Group

FIGURE 32.--Exposures of principal geologic units in study area.

Ellensburg Formation

The Ellensburg Formation comprises partly-consolidated sand and gravel and consolidated sedimentary rocks, mostly sandstone and siltstone, with some conglomerate and claystone. Most of these rocks overlie the basalt flows, but some layers are interbedded with upper flows of the basalt. The Ellensburg Formation occurs at depths of 100 ft or more beneath the centers of the major lowland valleys and gradually rises to land surface at the valley margins. In basin centers the thickness of the formation ranges from a few feet to as much as 1,000 feet; well 11/19-15Al, owned by the city of Wapato, penetrates 975 ft of sedimentary materials, probably more than 800 ft being in the Ellensburg Formation. The top of the formation is not everywhere well defined; in some places it grades upward into similar deposits of alluvial sand and gravel.

The sand and gravel strata form the principal water-yielding materials in the Ellensburg Formation. In areas where these materials are within 50 ft of land surface-generally in the marginal parts of the synclinal valleys—the aquifer is under unconfined (water-table) conditions. In deeper zones beneath the central parts of the valleys and underlying finer-grained and more consolidated sand and silt units, the water occurs under confined conditions.

Yields of properly constructed wells tapping the more productive zones of the Ellensburg Formation are as much as 1,500 gal/min.

Columbia River Basalt Group

The basalt flows and associated sedimentary interbeds form the most productive aquifer system (herein referred to as the basalt aquifer) in the Yakima River basin. Ground water occurs principally in fracture and rubble zones (typically at the tops and bottoms of most flow units), in vesicular and scoriacous interflow zones, and in sand and gravel layers that occur between some flow units. Water-yielding zones range from a few feet to 50 ft or more in thickness and may extend laterally only short distances or several miles.

The basalt aquifer is the most heavily developed in the Toppenish Creek basin, where yields of basalt wells range from 50 to more than 2,200 gal/min or more; the larger yields generally come from several basalt units and (or) sedimentary interbeds within the sequence. Because the various valleys in the study area (Ahtanum-Moxee, Toppenish, Satus, and Mabton-Prosser) are structural basins formed in the basalt, ground water beneath the valley centers is generally under greater artesian pressure (potentiometric head) than beneath the valley sides.

Structural Control of Ground-Water Movement

The effects of geologic structures on the direction and rate of ground-water flow in the study area cannot be precisely determined from existing data. As shown in figure 33, several major east-west trending anticlines (upward folds) and synclines (downward folds) in the area have formed topographic subbasins. These may or may not have individual, nearly independent, ground-water systems, but existing ground-water data are not sufficiently refined to permit adequate interpretations of the geohydrologic relations among the individual topographic basins. However, interpretations by previous investigators in the study area, based primarily on water-level data from wells, provide general conclusions on the effects of these structures.

According to an early study of the geology and water resources of the lower Naches, Cowiche, Ahtanum, and Moxee Valleys (Smith, 1901), the occurrence of ground water under high artesian pressure in the lower Ahtanum-Moxee Valley is due largely to the basin's synclinal structure (fig. 33). The syncline occurs between the Yakima Ridge anticline on the north and the Ahtanum Ridge-Rattlesnake Ridge anticline on the south. The ground water there occurs in basalt fracture zones and interbedded sediments and is confined under pressure beneath less permeable strata of basalt or finer grained sediments such as clay or silt. A later study of the lower Ahtanum Valley by Foxworthy (1962) similarly interpreted the structural downwarp in the basalt as causing the artesian conditions in that area.

Studies of the water resources and geohydrology of the Yakima Indian Reservation by the U.S. Geological Survey indicate that ground-water movement is largely controlled by geologic structures. According to studies of the Toppenish Creek basin (U.S. Geological Survey, 1975) and Satus Creek basin (Mundorff, Mac Nish, and Cline, 1977), ground water in both shallow sedimentary aquifers and deeper basalt aquifers flows from the sides and heads of these structural subbasins toward their centers, and then toward the Yakima River.

According to a several-phase study of the Yakima River basin by the U.S. Army Corps of Engineers (1978d, plates 17 and 21), ground water in both the sedimentary aquifers (alluvium and Ellensburg Formation) and basalt aquifers flows generally toward the Yakima River from the adjacent valley sides (fig. 34). Ground water beneath the Ahtanum, Toppenish, and Satus Creek basins flows eastward to the river, and water beneath the Moxee Valley flows westward toward the river. Similarly, ground water beneath the lower Naches Valley flows toward the Naches River and southeasterly toward the Yakima River. Beneath the south slope of the Rattlesnake Hills (south limb of the Rattlesnake Ridge anticline of Newcomb, 1970), ground water moves southerly toward the Yakima River.

FIGURE 33.—Principal geologic structures and generalized directions of ground-water movement.

FIGURE 34.—Typical flowing artesian well in 1897.

Of particular interest in the study area are aquifers containing water under high artesian pressure; in some areas wells have large artesian flows. A notable characteristic of the water is the rather high temperatures (66° to 80° F). The two principal areas of flowing wells are the Moxee Valley near the town of Moxee, and the Cold Creek valley in northwestern Benton County. The areas are situated in valleys with synclinal structures in the underlying basalt. The Moxee Valley is formed between the Yakima Ridge anticline on the north and the Rattlesnake Hills anticline on the south, and the Cold Creek valley is formed between the Umtanum Ridge anticline on the north and Yakima Ridge anticline on the south. The photograph in figure 34, taken during the study of the Moxee Valley by Smith (1901) indicates the magnitude of flows of some of the more than 25 artesian wells in the area at that time. According to a statewide inventory of flowing artesian wells (Molenaar, 1961), several wells in and near the town of Moxee had reported flows ranging from 500 to 875 gal/min.

Four wells in the Cold Creek valley were drilled to depths ranging from 606 to 1,110 ft, and had artesian flows of 800 to 2,000 gal/min when recorded during the period 1942-55. The wells now are owned by the U.S. Department of Energy.

Many wells drilled to depths ranging from 50 to more than 1,200 ft in the Ahtanum Valley have produced artesian flows ranging from 20 to more than 1,500 gal/min. In the Toppenish Valley an oil test well (ll/17-24D2), drilled in basalt to 2,760 ft, had a reported flow of 1,200 gal/min in 1957; the water temperature was 72° Fahrenheit.

A summary of pertinent data from artesian wells in the study area having recorded flows of 200 gal/min or more, or potentiometric heads of 5 ft or more above land surface, is presented in table 23.

Seasonal and Long-Term Water-Level Changes

Water levels in wells in eastern Washington normally are high during the late winter and early spring, as ground-water bodies are recharged by seasonal precipitation. The levels then decline during the summer and early fall, as precipitation and recharge decrease and water is withdrawn from wells for irrigation and other uses. Under natural conditions the water levels generally return each spring to their previous levels, with only annual variations in precipitation modifying the general pattern of similar high and low water levels from one year to the next.

Long-term and continual declines in water levels are generally due to long-term decreases in precipitation or, more commonly, to long-term withdrawals from wells at rates exceeding the rate of recharge. Water-level measurements have been made several times a year for many years at II wells in the study area. The highest and lowest water levels in these wells during the period 1965-79 are given in table 24. A graphical representation of seasonal and long-term water-level changes in 5 of the II water-level observation wells is shown in figure 35.

The hydrographs in figure 35 show that three of the five observation wells are used for irrigation supply and have had long-term, nearly continuous declines in water level from year to year; the municipal- and domestic-supply wells have had more nearly stable water levels over the years.

Ground-Water Quality

Chemical and physical analyses of ground-water samples from the study area (fig. 36) were made at widely separated times. During a statewide survey by Van Denburgh and Santos (1965), water-quality data covering the period 1939-61 in the study area were reported from 14 wells in Yakima County and 28 wells and 1 spring in Benton County. Copies of pertinent pages of the appendix tabulation in that report are presented in table 25. Subsequent chemical analyses were made of water from 71 wells, all in Benton County, during the period of April 1976-April 1977. The water was examined for many constituents and characteristics; these data are presented in table 26.

FIGURE 35.--Water-level fluctuations in selected wells, 1965-79.

FIGURE 36.—Locations of wells providing water-level observations and water-quality data.

Areal Development of Ground Water

Data Available

Well records compiled over many years are maintained in files of the Washington Department of Ecology (DOE) and the U.S. Geological Survey. The records come from drillers' logs submitted to DOE as required by law for permits for ground-water withdrawals—mostly for irrigation, public-supply, and industrial-supply wells—or were obtained through personal contacts with drillers and well owners during local studies of ground-water availability. Domestic-supply wells far outnumber other wells in the area, but until recent years they have not been recorded to the same extent as high-capacity wells requiring water rights. Individual well records vary in the completeness of data obtained, however, and only sparse data are presented for some wells. Computerized records of more than 3,800 wells in the study area were analyzed for pertinent information. A condensed listing of data from 484 of those wells (table 32) was selected as providing a representative sampling of ground-water conditions throughout the study area.

The areal distribution of recorded wells in the study area is shown, according to townships, in figure 37. The summary data on well depths, pumping yields, use, and number of flowing wells are presented in table 27, according to the nine subareas outlined in figure 38 and briefly described below.

Naches Subarea

The subarea includes the Naches and Tieton River basins to the confluence of Naches River and Cowiche Creek, about 3 mi upstream from the Naches-Yakima River confluence. Most of the basin is in mountainous terrain, and the principal ground-water development is in the lowland along the Naches River between the Tieton River confluence with Cowiche Creek. The principal center of population is the town of Naches.

Much of the lowland is irrigated by canal diversions from the Naches River and only a few wells are used for irrigation. Most wells are used for household supplies and a few are used for public supplies, many of these latter serving U.S. Forest Service campgrounds in the mountainous area. Nearly all wells in the lowland are less than 500 ft deep and yield less than 500 gal/min.

FIGURE 37.—Numbers of recorded wells by township.

FIGURE 38.—Subareas of ground-water development.

Cowiche Subarea

The subarea covers the drainage basins of the North and South Forks Cowiche Creek, and nearly all wells are situated in the agriculturally developed lower parts of the two basins. This area, a large terrace formed by an andesitic lava flow of Quaternary age, is irrigated mostly by canal diversion from the Tieton River. Of 113 wells for which water-use information is recorded, nearly a third are used for irrigation and about 60 percent are for household supplies. More than half the wells are in the depth range of 100 to 500 feet and yield less than 100 gal/min.

Ahtanum Subarea

The subarea includes the drainage basins of the North and South Forks Ahtanum Creek and Wide Hollow Creek and the remaining lowland area west of the Yakima River, between Ahtanum Ridge on the south and the eastern end of Cleman Mountain on the north. Most agricultural development is in the lowland below the confluence of the North and South Forks Ahtanum Creek, with most irrigation supplies being diverted from the Tieton Canal and some from smaller canals diverting directly from Ahtanum Creek. Of 745 wells for which water-use information is available, about 70 percent are used for household supplies and 20 percent are for irrigation. The subarea has 12 flowing artesian wells.

Moxee Subarea

The subarea is bounded by the Yakima River on the west, Yakima Ridge on the north, Rattlesnake Hills on the south, and the Moxee Valley drainage divide on the east. The agriculturally developed lowland in the western part of the subarea is irrigated principally by several canals diverting from the Yakima River, but wells provide for irrigation of some areas, mostly upslope from the Roza Canal. Of 158 wells for which water-use information is recorded, about 42 percent are used for irrigation and about 53 percent are for household supplies. The subarea has the largest number of flowing artesian wells (27) of any of the subareas.

Toppenish Subarea

The subarea includes the drainage basins of Toppenish, Agency, and Simcoe Creeks and the south slope of Ahtanum Ridge, all bounded on the east by the Yakima River. The area is entirely within the Yakima Indian Reservation and the lowland is irrigated mostly by water from the Reservation Canal (Wapato Canal). Of 538 wells for which water-use information is recorded, only 18 percent are used for irrigation.

Data from 646 wells in the subarea show depths as great as 2,524 ft for wells tapping the underlying basalt aquifer and yields as much as 5,000 gal/min.

Satus Subarea

The subarea is mostly in the Yakima Indian Reservation and includes the drainage basins of Satus, Logy, Dry, and Mule Dry Creeks and other areas bounded by Toppenish Ridge on the north, Horse Heaven Hills on the south, Klickitat River basin on the west, and the Yakima River on the northeast. The agriculturally developed part of the subarea is rather small and limited mostly to the irrigated areas below the Satus Pump Canal, which diverts from Toppenish Creek on the north.

Of 94 wells for which water-use information is recorded, most are used for household supplies and only about 20 percent are for irrigation.

Rattlesnake Slope Subarea

The subarea extends from the crest of the Rattlesnake Hills on the north to the Yakima River on the south, between Union Gap and Prosser, and includes a small area on the north slope of Horse Heaven Hills between Prosser and Kiona. The southern half of the slope below the Roza and Sunnyside Canals is irrigated from the canals, but some irrigation by ground water occurs above the canals. Of 261 wells for which water-use information is recorded, more than half are used for household supplies and about a third are for irrigation.

Hanford-Richland Subarea

The subarea covers the broad, nearly flat area between the Columbia River on the north and east, Rattlesnake Hills and Yakima River on the south, and the heads of the Cold and Dry Creek basins on the west. The city of Richland, at the confluence of the Yakima and Columbia Rivers, is the principal area of ground-water development, along with the U.S. Department of Energy facilities in the Hanford area.

As shown in figure 37, more than 700 of the 1,047 wells in the subarea are in the Department of Energy facility; nearly all were drilled for examining geologic and geohydrologic conditions underlying the area, but the data provided from these wells are sparse. The major source of irrigation is the Richland Canal, which supplies water to farms along the Yakima River, and only 64 wells are reportedly used for irrigation—mostly in the Richland area (sprinkling of lawns and gardens). Several wells are also used for irrigation near the Columbia River in the northernmost part of the subarea and in the Cold Creek area.

Kennewick Subarea

The subarea extends between the crest of the Horse Heaven Hills on the south and the Yakima and Columbia Rivers on the west, north, and east, between Kiona and Wallula Gap. The city of Kennewick is the principal area of business and residential development, but a large area of agricultural land on the slopes above the town is irrigated from the Kennewick Canal. Of 241 wells for which water-use data are recorded, about 62 percent are used for household supplies and 28 percent are for irrigation.

WATER USE

Information on water use in the study area includes that provided in (1) U.S. Bureau of Reclamation tabulations, of monthly and annual irrigation-canal diversions (table 31) and power diversions during the period 1960-77 (table 30) and (2) the report by Dion and Lum (1977), which summarized municipal, industrial, and irrigation water use statewide during 1975. Modifications of the latter data were made to adjust for slight variations between the quantities calculated for the WRIA's and county areas covered in that study and those covered in the present study.

The data obtained from the foregoing sources are summarized below for the calculated water use during 1975, the year for which most data are available.

	Quantity of v (thousands of	
Purpose	Ground water	Surface water
Municipal supply———————————————————————————————————	16.9 26.9	24.4 405
Irrigation————————————————————————————————————	10.4 54.2	$\frac{2,300}{2,730}$

Total water use for individual household supplies, virtually all from ground-water sources, was calculated on the basis of 100 gal/day per person, for an estimated rural (non-municipally supplied) population of about 74,300 people, and found to be about 8.3 thousand acre-ft per year. Total water use based on the foregoing calculations is about 62.5 thousand acre-ft from ground-water sources and 2,730 acre-ft from surface-water sources.

BIBLIOGRAPHY

- Beckey, Fred, 1973, Cascade alpine guide-climbing and high routes, Columbia River to Stevens Pass: The Mountaineers, Seattle, Wash., 341 p.
- Bell, M. C., and Mar, B. W., 1974, Model development and systems analysis of the Yakima River basin, fisheries: Washington State University Water Research Center Report 17F, 34 p.
- Betchart, W. B., 1974, Model development and systems analysis of the Yakima River basin, water quality monitoring: Washington State University Water Research Center Report 17D, 50 p.
- Bodhaine, G.L., and Thomas, D.M., 1964, Magnitude and frequency of floods in the United States, part 12, Pacific Slope basins in Washington and upper Columbia River basin: U.S. Geological Survey Water-Supply Paper 1687, 337 p.
- Boucher, P.R., 1975, Reconnaissance study of sediment transport by selected streams in the Yakima Indian Reservation, Washington, 1974 water year: U. S. Geological Survey Open-File Report 75-67, 11 p.
- Butcher, W. R., and Huettig, G. W., 1974, Model development and systems analysis of the Yakima River basin, economic modeling: Washington State University Water Research Center Report 17G, 56 p.
- Central Washington State College, 1976, Graphic displays of water rights and water resource information for the Yakima River basin as an aid to decision-making: Department of Geography Project Completion Report, p. 43, fig. 10, of 98 p.
- CH₂M/Hill, 1973, Framework for the plan of study, Yakima River basin: prepared for the State of Washington Department of Ecology; 84 p.
- ----1977, A status report on water-quality investigations, Yakima River basin, Washington: prepared for U. S. Bureau of Reclamation under Contract 14-06-100-9158, 111 p.
- Collings, M.R., and Higgins, G. T., 1973, Stream temperatures in Washington State: U. S. Geological Survey Hydrologic Investigations Atlas HA-385, 2 pl.
- Columbia Basin Inter-Agency Committee, 1964, River mile index, Yakima River, Columbia River basin, Washington: Portland, Oregon, 39 p.

- Copp, H.D., and Higgins, D.T., 1974, Model development and systems analysis of the Yakima River basin, hydraulics of surface water runoff:
 Washington State University Water Research Center Report 17B, 150 p.
- Cummans, J.E., Collings, M.R., and Nassar, E.G., 1975, Magnitude and frequency of floods in Washington: U. S. Geological Survey Open-File Report 74-336, 46 p.
- Dion, N.P., 1978, Primer on lakes in Washington: Washington Department of Ecology Water-Supply Bulletin 49, 55 p.
- Dion, N. P., Bortleson, G. C., McConnell, J. B., and Innes, J. K., 1976a, Data on selected lakes in Washington, part 5: Washington Department of Ecology Water-Supply Bulletin 42, part 5, p. 121 of 125 p.
- Dion, N.P., Bortleson, G. C., McConnell, J. B., and Nelson, L. N., 1976b, Reconnaissance data on lakes in Washington, volume 5, Chelan, Ferry, Kittitas, Klickitat, Okanogan, and Yakima Counties: Washington Department of Ecology Water-Supply Bulletin 43, vol. 5, 264 p.
- Dion, N.P., Bortleson, G. C., McConnell, J. B., and Nelson, L. N., 1976c, Reconnaissance data on lakes in Washington, volume 6, Adams, Benton, Douglas, Franklin, Grant, Lincoln, Walla Walla, and Whitman Counties: Washington Department of Ecology Water-Supply Bulletin 43, vol. 6, 407 p.
- Dion, N. P., and Lum II, W. E., 1977, Municipal, industrial, and irrigation water use in Washington, 1975: U. S. Geological Survey Open-File Report 77-308, 34 p.
- Fenneman, N. M., 1931, Physiography of the western United States: McGraw-Hill New York, 534 p.
- Flaherty, D. C., 1975, The Yakima basin and its water: Washington State University Water Research Center, Pullman, Wash., 29 p.
- Flint, R.F., 1938, Origin of the Cheney-Palouse scabland tract, Washington: Geological Society of America Bulletin, v. 49, no. 3, p. 461-523.
- Fox, J.D., 1974, Model development and systems analyses of the Yakima River basin, forest hydrology model: Washington State University Water Research Center Report 17E.
- Foxworthy, B. L., 1962, Geology and ground-water resources of the Ahtanum valley, Yakima County, Washington: U. S. Geological Survey Water-Supply Paper 1598 100 p.

- Fretwell, M.O., 1979, Quality of surface and ground waters, Yakima Indian Reservation, Washington: U. S. Geological Survey Open-File Report 77-128, 177 p.
- Gerlitz, W.G., 1977, 1977 irrigation in Horse Heaven Hills, Benton County: Hand-out information sheet prepared for 1977 annual tour of large irrigation projects in Horse Heaven Hills, Benton County Extension Service, Pasco, Washington.
- Gregg, D.O., and Laird, L.B., 1975, A general outline of the water resources of the Toppenish Creek basin, Yakima Indian Reservation, Washington: U. S. Geological Survey Open-File Report 75-19, 37 p.
- Gregg, D.O., and Lum II, W.E., 1973, Dry Creek exploration test well: U.S. Geological Survey Open-File Report, 9 p.
- Hart, D.H., 1958, Tests of artesian wells in the Cold Creek area, Washington: U. S. Geological Survey Open-File Report, 21 p.
- Higgins, G.T., and Hill, G.W., 1973, Analysis and summary of temperatures of streams in Washington prior to 1968: Washington Department of Ecology Miscellaneous Report 73-003, 141 p.
- Huntting, M.T., Bennett, W.A.G., Livingston, V. E., Jr., and Moen, W. S., 1961, Geologic map of Washington: Washington Division of Mines and Geology, 1:500,000, two sheets.
- Jenkins, O.P., 1922, Underground water of the region about White Bluffs and Hanford: Washington Division of Geology Bulletin 26, 41 p.
- King, L.G., Wattenburger, P.L., and Janke, A.C., 1977, Water quality monitoring for selected irrigated fields in the Sulphur Creek drainage area, 1976: Washington State University Agricultural Engineering Department, 31 p.
- Kinnison, H.B., 1952, Evaluation of streamflow records in Yakima River basin, Washington: U. S. Geological Survey Circular 180, 38 p.
- Kinnison, H.B., and Sceva, J.E., 1963, Effects of hydraulic and geologic factors on streamflow of the Yakima River basin, Washington: U.S. Geological Survey Water-Supply Paper 1595, 134 p.
- Kocher, A.E., and Strahorn, A.T., 1919, Soil survey of Benton County, Washington: U. S. Department of Agriculture, 72 p.
- Kratz, M.R., 1978, Dilemmas, disruptions, but no disaster--drought in the Yakima basin, Washington, 1977: State Climatologist for Arizona Climatological Publications, Scientific Paper No. 3, 16 p.

- Laird, L.B., and Walters, K.L., 1967, Municipal, industrial, and irrigation water use in Washington, 1965: U. S. Geological Survey Open-File Report, 13 p.
- Laval, W.N., 1956, Stratigraphy and structural geology of portions of south-central Washington: University of Washington Ph. D. thesis, 223 p.
- Longfield, R.J., 1974, Floods of January 1974 in Washington: U.S. Geological Survey Open-File Report. 13 p.
- Mar, B.W., and Butcher, W.R., 1974, Model development and systems analysis of the Yakima River basin, macro-model simulation: Washington State University Water Research Center Report 17A.
- Maytin, I.L., and Starr, W.A., 1960, Soils of Yakima County: Washington State University Engineering Soils Manual, 158 p.
- McGaughy, D.M., and Cunningham, R.K., 1973, Yakima River water quality report, December 1970-September 1971: Washington Department of Ecology Report No. 73-002, 87 p.
- Milhous, R.T., 1975, Status of the water resources planning program in the Yakima basin: Washington Department of Ecology Office Report No. 24, 67 p.
- Molenaar, Dee, 1961, Flowing artesian wells in Washington State: Washington Division of Water Resources Water-Supply Bulletin 16, 115 p.
- ----1977, Outline of the water resources of the Satus Creek basin, Yakima Indian Reservation, Washington: U.S. Geological Survey Open-File Report 76-808, 34 p.
- Molenaar, Dee, Grimstad, Peder, and Walters, K.L., 1980, Principal aquifers and well yields in Washington: Washington Department of Ecology Geohydrologic Monograph 5, single sheet.
- Mundorff, M. J., 1953, Availability of ground water to supplement surface water irrigation supplies in the Yakima River basin, Washington: U.S. Geological Survey Open-File Report, 11 p.
- Mundorff, M.J., MacNish, R.D., and Cline, D.R., 1977, Water resources of the Satus Creek basin, Yakima Indian Reservation, Washington: U. S. Geological Survey Open-File Report 76-685, 102 p.
- Nelson, L.M., 1974, Sediment transport by streams in the upper Columbia River basin, Washington, May 1969-June 1971: U. S. Geological Survey Water-Resources Investigations 39-73, 69 p.

- Nelson, L.M., 1979a, Sediment transport by irrigation return flows in the lower Yakima River basin, Washington, 1975 and 1976 irrigation seasons: U. S. Geological Survey Open-File Report 78-946, 76 p.
- ----1979b, Sediment transport by irrigation return flows on the Yakima Indian Reservation, Washington, 1975 and 1976 irrigation seasons:
 U. S. Geological Survey Open-File Report 78-947, 42 p.
- Newcomb, R.C., 1948, Ground water in the Kenniwick area, Washington: U.S. Geological Survey Open-File Report, 15 p.
- Newcomb, R.C., 1958a, Ground water in the Columbia Basin: U.S. Geological Survey Open-File Report, 7 p.
- ----1958b, Repair of leaking artesian wells in upper Cold Creek valley, Benton County, Washington: U. S. Geological Survey Open-File Report, 8p.
- ----1961, Structural barrier reservoirs of ground water in the Columbia River Basalt: U.S. Geological Survey Professional Paper 424B, p. B213-B215.
- ----1961a, Storage of ground water behind subsurface dams in the Columbia River Basalt, Washington, Oregon, and Idaho: U.S. Geological Survey Professional Paper 383A, p. A1-A15.
- ----1970, Tectonic structure of the main part of the basalt of the Columbia River Group, Washington, Oregon, and Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-587.
- Pacific Northwest River Basins Commission, 1976, Yakima basin level B study of water and related land resources preliminary draft: Vancouver, Wash., 227 p.
- Pacific Northwest River Basins Commission, 1977, Yakima basin level B study of water and related land resources: Vancouver, Wash., 235 p.
- Parker, G.G., Jr., 1971, Municipal, industrial, and irrigation water use in Washington, 1970: U. S. Geological Survey Open-File Report, 21 p.
- Pearson, H.E., 1977, Test-well drilling in the upper Satus Creek basin, Yakima Indian Reservation, Washington: U.S. Geological Survey Open-File Report 77-455, 14 p.
- Rasmussen, J.J., (undated), Soil survey of Benton County area, Washington U.S. Department of Agriculture Soil Conservation Service, 72 p., 105 pl.

- Sceva, J.E., Watkins, F.A., Jr., and Schlax, W.N., Jr., 1949, Geology and ground-water resources of Wenas Creek valley, Yakima County, Washington: U.S. Geological Survey Open-File Report, 81 p.
- Schminke, Hans-Ulrich, 1967, Stratigraphy and petrography of four upper Yakima Basalt flows in south-central Washington: Geological Society of America Bulletin v. 78, p. 1385-1422.
- Simons, W.D., 1953, Irrigation and streamflow depletion in the Columbia River basin above The Dalles, Oregon: U. S. Geological Survey Water-Supply Paper 1220, 126 p.
- Smith, G.O., 1901, Geology and water resources of a portion of Yakima County, Washington: U. S. Geological Survey Water-Supply Paper 55, 68 p.
- Stansbury, M., and Milhous, R.T., 1975, Water quality aspects of irrigation drainage in the Yakima basin: Washington Department of Ecology Office Report No. 34, 22 p.
- Sylvester, R.O., and Seabloom, R.W., 1962, A study on the character and significance of irrigation return flows in the Yakima River basin: University of Washington Department of Civil Engineering, 104 p.
- Thomas, Nancy, 1979, Yakima River--problems in Paradise: <u>in</u> Pacific Search, May 1979: Seattle, Wash., p. 8-58 (5 p.).
- Thompson, G.T., 1974, Model development and systems analysis of the Yaki-ma River basin, irrigated agriculture water use: Washington State University Water Research Center Report No. 17C, 80 p.
- U.S. Army Corps of Engineers, 1968, Yakima River, Benton County, Washington: Seattle, Wash., 37 p., 17 pl.
- ----1970, Yakima and Naches Rivers, Yakima-Union Gap, Washington: Seattle, Wash., 57 p., 17 pl.
- ----1972, Naches River, City of Naches and vicinity, Washington: Seattle, Wash., 24 p., 13 pl.

- U.S. Army Corps of Engineers, 1975, Flood plain information, Yakima River, Parker to Mabton and vicinity, Washington: Seattle, Wash., 30 p., 37 pl.
- ----1976, Yakima Valley regional water management study, plan of study: Seattle, Wash., 73 p.
- ----1978a, Yakima Valley regional management study, summary report, volume 1: Seattle, Wash., 78 p.
- ----1978b, Yakima Valley regional management study, water quality, volume 2: Seattle, Wash., 148 p.
- ----1978c, Yakima Valley regional management study, water budget, volume 3: Seattle, Wash., 125 p.
- ----1978d, Yakima Valley regional management study, geology and ground water, volume 4: Seattle, Wash., 61 p., 21 pl.
- ----1978e, Yakima Valley regional management study, volume I, summary report: Seattle, Wash., 82 p.
- ----1978f, Yakima Valley regional management study, volume II, water quality: Seattle, Wash., p.
- ----1978g, Yakima Valley regional management study, volume III, water budget: Seattle, Wash., 148 p.
- ----1978h, Yakima Valley regional management study, volume IV, geology and ground water: Seattle, Wash., 58 p., 21 pl.
- U.S. Bureau of Reclamation, 1951, Supplemental storage, Yakima Project, Washington, interim report: Boise, Idaho, 42 p.
- U.S. Bureau of Reclamation and U.S. Soil Conservation Service, 1974, Inventory of Yakima River basin, Washington, diversions and return flows, 1973-74: Yakima, Wash., 145 p., 61 pl.
- U.S. Bureau of Reclamation and U.S. Fish and Wildlife Service, 1976, Bumping Lake enlargement, Yakima Project, Washington - joint feasibility report: Boise, Idaho, 115 p., unpaged appendix material.
- U.S. Department of Agriculture, 1958, Soil survey of Yakima County, Washington: Soil Conservation Service Series 1942, no. 15, 143 p.
- ----1977, Irrigation development potential of the Horse Heaven Hills: Spokane, Wash., 20 p.

- U.S. Department of Commerce, 1965-73, Climatological data, Washington (annual summaries through December 1973): v. 69, no. 7 through v. 77, no. 12.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Federal Register, v. 40, no. 248, p. 59566-59588.
- ----1977a, Quality criteria for water, 1976: Washington, D.C., 256 p.
- ----1977b, National interim primary drinking water regulations: Washington, D.C., 159 p.
- ----1977c, National secondary drinking water regulations: Federal Register, v. 42, no. 62, part I, p. 17143-17147.
- ----1978, Socio-economic and institutional factors in irrigation return flow quality control, volume II, Yakima Valley case study: Report 600/2-78-174b, 132 p.
- U.S. Geological Survey, 1950, Compilation of records of surface waters of the United States through September 1950, part 12: U.S. Geological Survey Water-Supply Paper 1316, 592 p.
- ----1961-64, Surface-water records of Washington: Tacoma, Wash., published annually.
- U.S. Geological Survey, 1964a, Compilation of records of surface waters of the United States, October 1950-September 1960, part 12: U.S. Geological Survey Water-Supply Paper 1737, 282 p.
- ----1964b, Water-quality records in Washington: Tacoma, Wash., 227 p.
- ----1965-74a, Water resources data for Washington, part 1, surface water records: Tacoma, Wash., published annually.
- ----1965-74b, Water resources data for Washington, part 2, water quality records: Tacoma, Wash., published annually.
- ----1966, Mineral and water resources of Washington, report prepared for Senate Committee on Interior and Insular Affairs: Washington, D.C., 436 p.
- ----1975, Water resources of the Toppenish Creek basin, Yakima Indian Reservation, Washington: U. S. Geological Survey Water-Resources Investigations 42-74, 144 p.
- ----1976, Water resources data for Washington, water year 1975: U.S. Geological Survey Water-Data Report WA-75-1, 684 p.

- U.S. Geological Survey, 1977, Water resources data for Washington, water year 1976, volume 2, eastern Washington: U.S. Geological Survey Water-Data Report WA-76-2, 344 p.
- ----1978, Water resources data for Washington, water year 1977, volume 2, eastern Washington: U. S. Geological Survey Water-Data Report WA-77-2, 419 p.
- U.S. National Oceanic and Atmospheric Administration, 1974-77, Climatological data, Washington: annual summaries, January 1974 through December 1977, v. 78, no. 1 through v. 81, no. 12, Ashville, N.C.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture Handbook 60, 160 p.
- U.S. Weather Bureau, 1920-65, Climatological data, Washington: annual summaries, January 1910 through June 1965, vol. 24, no. 1 through vol. 69, no. 6.
- ----1965, Mean annual precipitation, 1930-57, State of Washington: Port-land, Oregon, U. S. Soil Conservation Service Map M-4430.
- Van Denburgh, A.S., and Santos, J.F., 1965, Ground water in Washington -its chemical and physical quality: Washington Division of Water Resources Water-Supply Bulletin 24, 93 p.
- Van Winkle, Walton, 1914, Quality of the surface water of Washington: U.S. Geological Survey Water-Supply Paper 339, 105 p.
- Waring, G.A., 1913, Geology and water resources of a portion if southcentral Washington: U. S. Geological Survey Water-Supply Paper 316, 46 p.
- Washington Department of Ecology, 1971, Water quality report, Yakima River, summer 1970: Olympia, Wash., 25 p.
- ----1976, Water quality assessment, Yakima River basin: Olynpia, Wash., 183 p.
- Washington Department of Health, 1936, First report stream pollution studies, Yakima River valley: Olympia, Wash., 44 p.
- Washington Division of Water Resources, 1953, Monthly and yearly summaries of hydrographic data in the State of Washington to September 1953: Washington Division of Water Resources Water-Supply Bulletin 6, 836 p.

- Washington Division of Water Resources, 1960, Summary of snow survey measurements in the State of Washington 1915-1960 inclusive: Washington Division of Water Resources Water-Supply Bulletin 13, 111 p.
- ----1964, Miscellaneous stream-flow measurements in the State of Washington, 1890 to January 1961: Washington Division of Water Resources Water-Supply Bulletin 23, 292 p.
- Washington State University, 1972a, Irrigation development potential and economic impacts related to water use for the Yakima River basins:
 Agricultural Research Center, Pullman, Wash., 140 p.
- ----1972b, Land development and water use, Yakima River basin, Washington: Agricultural Research Center, Pullman, Wash., 93 p.
- ----1972c, Land development and water use, Yakima River basin, Washington: College of Agriculture Research Center, Pullman, Wash., 149 p.
- ----1977a, Water quality monitoring for selected irrigated fields in the Sulphur Creek drainage area, 1976, appendix 1: Agricultural Engineering Department, 259 p.
- ----1977b, Water quality monitoring for selected irrigated fields in the Sulphur Creek drainage area, 1976, appendix 3: Agricultural Engineering Department, p. 523-869.
- Washington Office of Financial Management, 1977, State of Washington pocket data book: Olympia, Wash., 276 p.
- Williams, J.R., 1964, Drainage-area data for eastern Washington: U.S. Geological Survey Opel-File Report, 197 p.
- Wolcott, E.E., 1964, Lakes of Washington, volume 2, eastern Washington: Washington Division of Water Resources Water-Supply Bulletin 14, 650 p.

SUPPLEMENTAL DATA TABLES

TABLE 12.--Types and periods of record of water-quality analyses in study area

USGS No. in	Station	Station name	River mile upstream from main stream				
fig. 27	No.	(with some abbreviations)	junction a	1960	1961	1962	1963
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 33 35 36 36 36 36 36 36 36 36 36 36 36 36 36	12484500 12485015 12485010 12485012 12485014 12485016 12485016 12488500 12488000 12488500 12488500 12489500 12489500 12494400 12494400 12494400 12500430 12500430 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500450 12500451 12504516 12504516 12504518	Yakima River at Umtanum	113.2 2.8 1.5 .6 1.3 .7 2.2	C	C	C	- C - C - C - C - C - C - C - C - C - C
37	12505000	Yakima River nr Parker			CT	CT	CT
38	12505300	Yakima River nr Toppenish (1.6 mi N of Toppenish)		CT			

pes of da	. [B, biolog F, daily	ical(plan) temperatu	l and physic kton, peripl re, or ofter conductance	hyton, et n;	c.);	. !	Tr, trace (P, pesticio Mb, microb S, suspendo	des; iological	(coliform,	etc.);	<u></u>	
1964	1965	1966	1967	1968 1	969	1970	1 971	1972	1973	1974	1975	1976	1977
		CBCd	T CCdT	CCdTMb	· TS CMbCdT	TS CMbCdT	TS			СМЬ	СМЬ		
							- CMb	СМЬ	СМЬ	СМЬ	CdTS	CdTS CdTS	
CTrMt	CTr	ИЬ									TS	CdTS	
CTrMb CTrMb CTrMb				T	TS	†s	TS -						
CTrMb CTrMb	CTr)						*********				
CTrMb	CTr	4b CTrNt		CMb CMb	TS CTr	TS CMb	T\$				CMb		
						*********	- СМЬ	СМЬ	CTrMb CMb CMb	CMB CMb CMb CMb CMb	CMb CMb TSCMb CMb CMb CMbTS	CdTS	
									·····	CMbTr CMbTr CMbTr	TS	CdTS	
										- CMP	CMbts	CdTS	
							CMb CMb	CMP CMP	CMb CMb	CMbTr CMb	CMbTr CdTS	CMb CdTS TSP	CMI
											 	CdTS - CdTS - CdTS	
CTrCd TMb	CTrC T	d CMbCd	CCdT	CMBCd	СМРСЯ	СМБСФ			CMbTr	СМЬ	TS CMb	CdTS CMb	
		*******					СМЪ		СМЬ	СМЬ	СИЬ		CMb (Se

TABLE 12.--Types and periods of record of water-quality analyses in study area--Continued

USGS .			River mile upstream from main				
No. in fig. 27	Station No.	Station name (with some abbreviations)	stream junction ^a	1960	1961	1962	1963
39	12505350	East Toppenish Drain at Wilson Rd nr Toppenish					
40	12505410	Sub 35 Drain at Parton Rd nr GrangerGranger Drain at Granger					
41	12505450	Granger Drain at Granger					
42	12505480	Wanity Slough at Rocky Ford Rd nr Toppenish					
43	12505500	Marion Drain or Grander					
44	12506000	Toppenish Cr nr Ft Simcoe					
45	12506300	North Fork Simcoe Creek nr Ft Simcoe					
46	12506330	South Fork Simcoe Creek nr Ft Simcoe					
47	12506600	Agency Creek nr Ft Simcoe					
48	12507090	Mud Lake Drain nr Harrah	26.5				
49	12507100	Mill Cr at Canyon Rd nr White Swan				<u>.</u>	
50	12507500	Toppenish Cr at Alfalfa	3.4				****
51	12507508	Toppenish Cr at Indian Church Rd nr Granger	2.4				
52	12507510	Toppenish Creek nr Satus					
53	12507560	Coulee Drain at North Satus Rd nr Satus					
54	12507940	Satus Creek above Logy Creek nr Toppenish	.16				
55	12507950	Logy Creek nr Toppenish	.5				
56	12508480	Dry Creek nr Toppenish	89.0				
57	12508590	Satus Creek at Plank Rd nr Satus	77.0				
58	12508600	Satus Creek nr Satys	•				
59	12508610	Satus Creek at North Satus Rd at Satus					
60	12508621	Satus Creek at Satus	1.5				
61	12508630	South Drain nr Satus	1.0+				
62	12508660	Satus Drain 302 at Hwy 22 nr Mabton	1.0∓				
63	12508690	Satus Drain 303 at Looney Rd nr Mabton	i o∓				
64 .	12508790	DID 18 Drain at Sunnyside	-				
65	12508810	Washout Drain at Sunnyside					
66	12508820	Black Cayon Creek at Waneta Rd nr Sunnyside					
67	12508830	DID 9 Drain nr Sunnyside					
68	12508840	DID 3 Drain nr Sunnyside					
69	12508850	Sulphur Cr Wasteway nr Sunnyside (McGee Rd)	61.0				
70	12508990	Yakima R at Mabton	59.8				
71	12508997	Grandview Drain at Chase Rd nr Sunnyside	03.0				
72	12509489	Yakima River at Prosser	47.4				
73	12509492	Wamba Drain at Prosser	46+				
74	12509496	Shelby Drain at Shelby Rd at Prosser					
75	12509700	Spring Creek at Hess Rd nr Prosser	41.8				
76	12509820	Snipes Creek or Prosser	41.8				
77	12510200	Corral Canyon Creek nr Benton City					
78	12510500	Yakima River at Kiona	29.9	CT	CT	CT	CT
• •		- MUINT VIIEL ## VIANG	E-7 1 -5		··		٠٠
79	.12511800	Yakima River at Van Griesan Bridge nr Richland	8.4				

aRiver miles are estimated where not given in previous publications, which include U.S. Geological Survey annual streamflow summaries, and Columbia Basin Interagency Committee (1964).

s of data	В, Т,	biolog daily	ical(pla temperat	al and ph nkton, pe ure, or o c conduct	riphyton, ften:	etc.);					etc.);		
1964 19	65	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
							СМЬ	СМЬ	СМЬ	CMb CMbTr CMb	TS TSMb CMb CMb	CdTS	
				C						CMbTr CMb(4/ CMbTr CMb -	74)		
										СМЬ	TS	CdTS	
				C						- CMb CMbTr	TS TS TS	CdTS CdTS CdTS CdTS CdTS CdTS CdTS	Catsp
							СМЬ		– Смь	- СМЬ СМЬ	CMbCdTS CMdTS	Cats	CdTS CdTS CdTS CdTS
								СМЬ	СМЪ	СМЬ	- TS CMb - TS	CdTS	
										CMb CMb	TS CMBTS CMBTS CMBTS	CdTS CdTS	
CTrÇd TMb	CTrC	dt cmbc	at CCd1	CMb TP	Cd CMb CdT		PCd	CHDI CdT	CMbT TrPCd	CMbTr PCdT - CMb	CMbTi CdTS CMb		- CMbTi

TABLE 13.--Minimum, mean, and maximum values of selected water-quality characteristics at stream and canal sites in study area,
1974 irrigation season

[Data sources: CE, U.S. Army Corps of Engineers (1978) 6S, U.S. Geological Survey (1975, 1976)

F, Fretwell (1979) B, P.R. Boucher, M. O. Fretwell (written commun., 1979)}

Site No. in fig. 19	USGS Station name (abbreviated)		Source of data		nitr nitrat (mg/L)		nit	Ammonia rogen (mg/L)		phos	Total phorus (mg/L)	(P)	orthos:	olved ophosph phorus mg/L)	
_				Mis	Mean	Мах	Min	Mean	Мах	Kin	Неал	Max	Min	Mean	Max
1 19	484500	Yakima R at Umtanum	CE	7.9	0.09	0.14	0	0.02	0.04	0.02	0.02	0.09	0.01	0.02	0.03
21	500010 500439	Yakima R nr Terrace Heights Wide Hollow Cr at Goodman Rd at Union Gap	GS	. 04		.12	.04	. 09	.19	.02	. 07	.17	.01	. 02	.03
25	500600	N.F. Ahtanum Cr at Tampico	. GS F	. 62 . 01		1.50	.03	.10	.30	.11	.16	.22	. 05	.11	. 15
26	501600	S.F. Ahtanum Cr at Tampico	F	.01		.02	.11	(b) {b}	.32	. 05 . 06	(b) (b)	.09			
29	503500	Reservation (New, Main) Canal or Parker	F	.09		. 35	;ii	, 52	2.20	.05	.09	.15			
37 38	505000 505300	Yakima R nr Parker Yakima R nr Toppenish	ČE	••		••	.05	.09	.15	. 06	.10	.14	.02	.03	. 07
42	505480	Wanity Slough at Rocky Ford Rd nr Toppenish	F F	.06		.16	.03	. 10	.19	. 05	.09	.18	.02	.03	. 04
43	505500	Marion Orain or Granger	F	. 32 . 97		1.8 2.30	. 25 . 31	. 39	.53 .46	.09	.10	.12			
44	506000	Toppenish Cr nr Ft. Simcoe	F	.01	(b)	.04	.11	(b)	.40	.06	.15 (b)	.20 .17	.07	.09	.11
45 46	506 300	N.F. Simcoe Cr nr Ft. Simcoe	F	01	(b)	.05	.16	(b)	.31	.09	(6)	.09			
48	506330 507090	S.F. Simcoe Cr nr Ft. Simcoe Mud Lake Drain nr Harrah	F	.03		.11	.18	(6)	. 57	. 09	(b)	.14			
52	507510	Toppenish Cr nr Satus	F F	. 69		2,0	.37	. 69	1,2	. 20	. 32	. 55	••		••
54	507940	Satus Cr above Logy Cr nr Toppenish	F	. 07 . 01	1.4 (b)	2.06 .01	. 33 . 10	. 46	. 68	. 11	, 15	.27	••		
55	507950	Logy Cr nr Toppenish	F	.01	(6)	.01	.14	(b)	.11	.04	(b)	. 05 . 06			
56 60	508480 508621	Dry Er nr Toppenish	F	. 02		. 14	. 28	(6)	. 33	.05	(b)	.05			
70	508990	Satus Gr at Satus Yakima R at Mabton	F	.06	.76	1.3	. 17	. 30	,44	.11	.14	.17	.05	. 07	.09
72	509489	Yakima R at Prosser	F GS	. 20	. 58	1.0	. 07	.11	.19	. 09	.14	, 22	.03	. 05	.08
78	510500	Yakima R at Kiona	G\$.20	. 59 . 66	1.0 .96	.04 .05	.10	. 16	.10	.13	. 20	.01	.05	.09
		Yakima R at Granger	ČĚ	.11	.31	.62	۵.ن	.02	.14 .05	.11. .08	.15 .10	.22 .14	.04 .02	. 06 . 05	.08
79	511800	Yakima R at Yan Giesan Bridge nr Richland	GS	.25	. 53	.84	. 04	.10	.18	.01	,15	.25	.01	.04	.07
3	485005	Roza Canal at Beam Rd nr Zillah	CΣ	.03	.06	.10	0	.01	.03	.02	.04	.06	. 01	.02	.02
18 20	499000 500420	Naches R at Yakima	CE	.02	. 04	.06	õ	.02	.04	. 01	.03	.06	0.01	.01	.03
20 22	500440	Moxee Drain at Birchfield Rd nr Union Gap Wide Hollow Cr at Union Gap	CE	. 51	.80	1.02	.02	.04	. 05	. 24	.40	. 69	.11	.16	.22
23	500445	Wide Hollow Cr nr mouth at Union Gap	GS CE	.73	1.02	1.4	. 03	.08	.12	.12	.18	.42	.07	.11	.14
28	502500	Ahtanum Cr at Union Gap	CE	. 78 . 27	1.02	1.26	.03	.08 .01	.10	.15	.18	. 27	.08	.11	.14
30	503950	Yakima R at Parter	F	.06	.12	.16	.09	. 26	.03	.11 .05	.14	. 23 . 18	.06	. 09	.12
31 41	504505 505450	Sunnyside Canal at Beam Rd nr Granger	CE	, 02	.08	.15	0.03	.02	.02	.04	.06	.09	.02	.03	.04
٠,	303430	Granger Drain at Granger	ÇE	1.46	1.65	2.03	.01	.17	. 40	. 32	. 54	,71	. 16	. 18	.22
75 76	509700	Spring Cr at Hess Rd nr Prosser	CE	.81	1,22	1,56	0	1.01	. 02	.12	. 25	. 38	.05	. 06	. 07
69	509820 508850	Snipes Cr nr Prosser	CE	. 19	. 25	. 38	0	.õi	,01	.08	.16	. 26	.02	.03	.09
		Sulphur Cr Wasteway at McGee Rd	CE	1,06	1.71	2.12	. 01	.09	. 16	.23	. 29	.42	. 09	.ii	.14
27 24	502490 500450	Ahtanum Cr at Goodman Rd at Union Gap	F	.11	. 35	.16	. 22	.42	. 64	. 10	.17	. 26			
	508630	Yakima R above Ahtanum Cr at Union Gap South Drain nr Satus	GS F	.50	1.2	1.7				••					
			•	. 30	1,2	1.7	. 35	.76	2.0	.17	. 24	.32		•-	•-
Sulphu	r Creek	basin - 1976 Irrigation Season													
	485010	Roza Canal at Scoon Rd nr Sunnyside	В	0	.10	.48				. 07	.04	.12			
	485012	Roza Canal below Sulphur Cr Wasteway or Supposide		, 01	.08	.21				.02	.07	.10			
	485014 485016	Koza Canal at Black Canyon Cr nr Sunnyside		0	.08	. 22				.03	.08	.12			
В	485018	Roza Canal at Factory Rd nr Sunnyside Roza Canal at Wilgus Rd nr Grandview	••	0	.08 .07	.28				.04	.09	.12			
	504510	Sunnyside Canal at Manie Grove Rd or Sunnyside		.03	.11	.26 .22				.04	. 09	.12			••
13	504512	Sunnyside Canal below Sulphur Cr Wasteway		.05		- 44				. 05	.12	. 20			
14	504514	nr Sunnyside		. 05	.17	.73			••	.08	.14	. 20			
	504516	Sunnyside Canal at Edison Rd nr Sunnyside Sunnyside Canal at Bethnay Rd nr Grandview		. 06	. 15	. 28				.10	.15	. 21			
5	504518	Sunnyside Canal at Grandview		.06 .09	.16 .19	.27		••		. 09	.15	. 27			
	508790	DID 18 Drain at Sunnyside		2.9	3.6	.32 4.7				.08 .34	. 17	.27			
	508810 508820	Washout Drain at Sunnyside	**	1.6	2.5	3.5				. 17		3.8 1.2			
	508830	Black Canyon Cr at Waneta Rd nr Sunnyside DID 9 Orain nr Sunnyside	••	1.9	3.7	4.8				.18		2.0			
8 !	08840	DID 3 Drain or Suppreside			3.3 2.8	5.3				.17	. 34	.53			
9 !	508850	Sulphur Cr Wasteway nr Sunnyside			1.9	5.8 2.5		••		. 64		1.6			••
				, 94	1.9	2.5				, 18	.49	.84			_

TABLE 13.--Minimum, mean, and maximum values of selected water-quality characteristics at stream and canal sites in study area.
1974 irrigation season--Continued

A84500 Yakima R at Umtanum CE 83 97 103 7.4 7.6 7.6 7.9 11.1 17.2	4 11 30 2 (b) 20 3 (b) 4 1 11 30 5 14 31 4 15 45 4 8 20 4 14 25 1 (b) 30
19 500010 Yakima R nr Terrace Heights 65 72 122 340 7.4 8.0 8.9 6.2 12.9 17.3	3 13 45 4 11 30 2 (b) 20 3 (b) 4 1 11 30 5 14 31 4 15 45 4 8 20 4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
S00439	4 11 30 2 (b) 20 3 (b) 4 1 11 30 5 14 31 4 15 45 4 8 20 4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
Spoint S	2 (b) 20 3 (b) 4 1 11 30 5 14 31 4 15 45 4 8 20 4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
S03500 Reservation (New, Main) Canal nr Parker F 78 102 130 8.7 12.3 18.6	1 11 30 5 14 31 4 15 45 4 8 20 4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
S05000 Yakima R nr Parker CE	5 14 31 4 15 45 4 8 20 4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
Sociation Soci	4 15 45 4 8 20 4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
Society Soci	4 14 25 1 (b) 30 2 (b) 10 3 30 20 48 100
Society Toppenish Cr nr Ft Simcoe F 64 (b) 134 9.0 (b) 20.8	1 (b) 30 2 (b) 10 3 30 20 48 100
Sociation Soci	2 (b) 10 3 30 20 48 100
16 506330 S.F. Simcoe Cr nr Ft. Simcoe F 70 (b) 144 9.6 (b) 17.5 18 507390 Mud Lake Drain in Harrah F 258 307 350 10.6 16.9 22.4 25 507510 Toppenish Cr nr Satus F 220 305 440 8.4 15.3 18.8 4 507940 Satus Cr above Logy Cr nr Toppenish F 77 (b) 130 17.0 (b) 17.4 55 507950 Logy Cr nr Toppenish F 80 (b) 100 15.4 (b) 15.9 50 508480 Dry Cr nr Toppenish F 80 (b) 167 7.4 (b) 8.3 50 508621 Satus Cr at Satus F 130 280 390 7.7 7.8 7.9 6.3 14.5 18.7 50 508980 Takima R at Mabton F 107 202 320 7.2 7.8 8.1 8.4 15.4 20.3 25 509489 Yakima R at Prosser GS 114 206 340 7.6 7.9 8.3 8.2 15.4 19.8 8 510500 Yakima R at Kiona GS 98 187 319 7.5 7.9 8.4 8.0 16.8 22.5 8 511800 Yakima R at Granger CE 109 157 228 7.3 7.7 8.3 9.5 14.1 17.8 9 511800 Yakima R at Yah Giesan Bridge nr Richland GS 116 231 370 7.3 8.0 9.0 8.1 15.7 20.7 3 485005 Roza Canal at Beam Rd nr Zillah CE 50 78 98 7.2 7.7 8.1 8.4 12.5 15.5 10 500420 Moxee Drain at Birchfield Rd nr Union Gap GS 300 351 400 7.9 8.1 8.5 10.5 14.6 17.4 13 500445 Wide Hollow Cr nr mouth at Union Gap CE 305 351 395 8.0 8.1 8.3 10.9 14.6 17.4 15 17 17 18 18 18 18 18 18	3 30 20 48 100
52 507510 Toppenish Cr nr Satus F 220 305 440 8.4 15.3 18.8 507940 Satus Cr above Logy Cr nr Toppenish F 77 (b) 130 17.0 (b) 17.4 55 507950 Logy Cr nr Toppenish F 80 (b) 100 15.4 (b) 15.9 56 508480 Dry Cr nr Toppenish F 80 (b) 100 7.4 (b) 8.3 50 508621 Satus Cr at Satus F 100 16.7 7.4 (b) 8.3 50 508621 Satus Cr at Satus F 100 16.7 202 320 7.2 7.8 8.1 8.4 15.4 20.3 7.5 50990 Yakima R at Mabton F 107 202 320 7.2 7.8 8.1 8.4 15.4 20.3 7.5 50990 Yakima R at Prosser GS 114 206 340 7.6 7.9 8.3 8.2 15.4 19.8 7.5 509489 Yakima R at Kiona GS 98 187 319 7.5 7.9 8.4 8.0 16.8 22.5 7.1 7.1 8.1 8.4 15.7 20.7 15.0 15.0 Yakima R at Van Giesan Bridge nr Richland GS 116 231 370 7.3 8.0 9.0 8.1 15.7 20.7 13 485005 Roza Canal at Beam Rd nr Zíllah CE 90 101 116 6.9 7.5 7.9 10 13.7 19.5 8 499000 Naches R at Yakima Cat Union Gap CE 266 352 410 7.4 7.7 8.0 9.5 16.8 22 500440 Wide Hollow Cr at Union Gap GS 300 351 400 7.9 8.1 8.5 10.5 14.6 17.4 17.8 500445 Wide Hollow Cr nr mouth at Union Gap CE 305 351 395 8.0 8.1 8.3 10.9 14.6 17.4 17.8 10.9 11.8 10.9 14.6 17.4 17.8 10.9 11.8 10.9 14.6 17.4 17.8 10.9 11.8 10.9 14.6 17.4 17.8 10.9 14.6 17.4 17.8 10.9 11.8 10.9 14.6 17.4 17.8 10.9 11.8 10.9 14.6 17.4 17.8 10.9 11.8 10.9 14.6 17.4 17.8 10.9	
54 507940 Satus Cr above Logy Cr nr Toppenish F 77 (b) 130 17.0 (b) 17.4 (b) 15.9 (b) 507950 Logy Cr nr Toppenish F 80 (b) 100 15.4 (b) 15.9 (b) 508480 Dry Cr nr Toppenish F 90 (b) 167 7.4 (b) 8.3 (b) 508521 Satus Cr at Satus F 90 (b) 167 7.4 (b) 8.3 (b) 508521 Satus Cr at Satus F 130 280 390 7.7 7.8 7.9 6.3 14.5 18.7 (c) 508980 Yakima R at Mabton F 107 202 320 7.2 7.8 8.1 8.4 15.4 20.3 (c) 7.2 509489 Yakima R at Prosser GS 114 206 340 7.6 7.9 8.3 8.2 15.4 19.8 (c) 8 510500 Yakima R at Kiona GS 98 187 319 7.5 7.9 8.4 8.0 16.8 22.5 (c) 7.2 Yakima R at Granger CE 109 157 228 7.3 7.7 8.3 9.5 14.1 17.8 (c) 511800 Yakima R at Van Giesan Bridge nr Richland GS 116 231 370 7.3 8.0 9.0 8.1 15.7 20.7 (c) 500420 Moxee Drain at Birchfield Rd nr Union Gap CE 266 352 410 7.4 7.7 8.0 9.5 16.8 22 500440 Wide Hollow Cr ar Union Gap GS 300 351 400 7.9 8.1 8.5 10.5 14.6 17.4 (c) 500445 Wide Hollow Cr nr mouth at Union Gap CE 305 351 395 8.0 8.1 8.1 8.3 10.9 14.6 17	7 17 7N
55 507950 Logy Cr nr Toppenish F 80 (b) 100 15.4 (b) 15.9 50850 Dry Cr nr Toppenish F 90 (b) 167 7.4 (b) 8.3 50950 Dry Cr nr Toppenish F 90 (b) 167 7.4 (b) 8.3 50950 Sust Cr at Satus F at Satus F 130 280 390 7.7 7.8 7.9 6.3 14.5 18.7 70 508990 Yakima R at Mabton F 107 202 320 7.2 7.8 8.1 8.4 15.4 20.3 70 508990 Yakima R at Frosser GS 114 206 340 7.6 7.9 8.3 8.2 15.4 19.8 70 510500 Yakima R at Kiona GS 98 187 319 7.5 7.9 8.4 8.0 16.8 22.5 70 511800 Yakima R at Granger CE 109 157 228 7.3 7.7 8.3 9.5 14.1 17.8 79 511800 Yakima R at Van Giesan Bridge nr Richland GS 116 231 370 7.3 8.0 9.0 8.1 15.7 20.7 70 500420 Moxee Drain at Birchfield Rd nr Union Gap CE 266 352 410 7.4 7.7 8.0 9.5 16.8 22 500440 Mide Hollow Cr at Union Gap GE 305 351 395 8.0 8.1 8.3 10.9 14.6 17	1 (b) 2
56 508480 Dry Cr nr Toppenish F 90 (b) 167 7.4 (b) 8.3 50 508621 Satus Cr at Satus F 130 280 390 7.7 7.8 7.9 6.3 14.5 18.7 70 508990 Yakima R at Mabton F 107 202 320 7.2 7.8 8.1 8.4 15.4 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	
70 508990 Yakima R at Mabton F 107 202 320 7.2 7.8 8.1 8.4 15.4 20.3 20 509489 Yakima R at Prosser GS 114 206 340 7.6 7.9 8.3 8.2 15.4 19.8 20 510500 Yakima R at Kiona GS 98 187 319 7.5 7.9 8.4 8.0 16.8 22.5 20.7 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.8 8.1 8.4 15.4 20.3 20 7.2 7.2 8.1 8.1 15.4 20.3 20 7.2 7.2 8.1 8.1 15.4 20.3 20 7.2 7.2 8.1 8.2 9.5 14.1 17.8 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	1 (b) 3
22 509489 Yakima R at Prosser GS 114 206 340 7.6 7.9 8.3 8.2 15.4 19.8 8	5 10 20
78 510500 Yakima R at Kiona GS 98 187 319 7.5 7.9 8.4 8.0 16.8 22.5 7.7 Yakima R at Granger CE 109 157 228 7.3 7.7 8.3 9.5 14.1 17.8 7.9 511800 Yakima R at Van Giesan Bridge nr Richland GS 116 231 370 7.3 8.0 9.0 8.1 15.7 20.7 7.3 485005 Roza Canal at Beam Rd nr Zillah CE 90 101 116 6.9 7.5 7.9 10 13.7 19.5 8.4 499000 Naches R at Yakima CE 50 78 98 7.2 7.7 8.1 8.4 12.5 15.5 7.0 500420 Moxee Drain at Birchfield Rd nr Union Gap CE 266 352 410 7.4 7.7 8.0 9.5 16.8 22 7.5 500440 Wide Hollow Cr at Union Gap GS 300 351 400 7.9 8.1 8.5 10.5 14.6 17.4 7.7 8.0 9.5 16.8 22 7.5 7.5 7.9 8.1 8.4 12.5 15.5 8.0 9.5 16.8 22 7.5 8.1 8.5 10.5 14.6 17.4 9.5 8.0 9.5 16.8 22 7.5 8.1 8.5 10.5 14.6 17.4 9.5 8.5 8.0 8.1 8.3 10.9 14.6 17.5 9.5 8.0 9.5 14.6 17.5 9.5 8.0 9.5 14.6 17.5 9.5 8.0 9.5 14.6 17.5 9.5 8.0 9.5 14.6 17.5 9.5 9.5 9.0 8.1 8.3 10.9 14.6 17.5 9.5 9.0 9.5 14.6 17.5 9.5 9.0 9.5 14.6 17.5 9.5 9.0 9.5 14.6 17.5 9.5 9.0 9.5 14.6 17.5 9.5 9.0 9.5 14.6 17.5 9.5 9.0 9.5 9.5 9.0 9.5 14.6 17.5 9.5 9.0 9.5 9.5 9.5 9.5 9.0 9.5 9.5 9.5 9.5 9.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	9 20 45 5 17 45
Yakima R at Granger 79 511800 Yakima R at Granger 80 116 231 370 7.3 8.0 9.0 8.1 15.7 20.7 81 485005 Roza Canal at Beam Rd nr Zíllah 82 485005 Roza Canal at Beam Rd nr Zíllah 83 485005 Roza Canal at Beam Rd nr Zíllah 84 499000 Naches R at Yakima 85 10 500420 Moxee Drain at Birchfield Rd nr Union Gap 85 300 351 400 7.9 8.1 8.5 10.5 14.6 17.4 86 300 351 355 80.0 8.1 8.3 9.5 14.1 17.8	6 19 45
3 485005 Roza Canal at Beam Rd nr Zillah CE 90 101 116 6.9 7.5 7.9 10 13.7 19.5 8 499000 Naches R at Yakima CE 50 78 98 7.2 7.7 8.1 8.4 12.5 15.5 10 500420 Moxee Drain at Birchfield Rd nr Union Gap CE 266 352 410 7.4 7.7 8.0 9.5 16.8 22 12.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	8 9 12
8 499000 Naches R at Yakima CE 50 78 98 7.2 7.7 8.1 8.4 12.5 15.5 10 500420 Moxee Drain at Birchfield Rd nr Union Gap CE 266 352 410 7.4 7.7 8.0 9.5 16.8 22 10 10 10 10 10 10 10 10 10 10 10 10 10	6 18 40
8 499000 Maches R at Yakima CE 50 78 98 7.2 7.7 8.1 8.4 12.5 15.5 78 78 78 78 78 78 78 7	1 4 9
2 500440 Wide Hollow Cr at Union Gap GS 300 351 400 7.9 8.1 8.5 10.5 14.6 17.4 3 500445 Wide Hollow Cr nr mouth at Union Gap CE 305 351 395 8.0 8.1 8.3 10.9 14.6 17	1 4 12
3 500445 Wide Hollow Cr nr mouth at Union Gap CE 305 351 395 8.0 8.1 8.3 10.9 14.6 17	11 30 50
	3 8 20 4 8 15
18 502500 Ahtanum Cr at Union Gap CE 141 268 384 7,6 7,9 8,2 10,5 15,5 20	4 7 10
00 503950 Yakima Rat Parker F 79 118 160 7.7 13.4 19.3	4 14 45
II 504505 Sunnyside Canal at Beam Rd nr Granger CE 84 109 141 7.0 7.6 8.2 11.1 15.2 17.8 II 505450 Granger Drain at Granger CE 356 390 434 7.6 7.7 7.9 10.5 15 19	2 6 10 18 42 70
15 509700 Spring Cr at Hess Rd nr Prosser CE 262 290 325 7.7 7.8 8.0 12 16.5 21 16 509820 Snipes Cr nr Prosser CE 154 181 214 7.6 7.7 7.9 12 16.9 22	13 32 48 8 28 60
ig 508850 Sulphur Cr Wasteway at McGee Rd CE 211 310 359 7.4 7.7 7.9 11 14.3 18.2	14 25 48
.7 502490 Ahtanum Cr at Goodman Rd at Union Gap F 91 244 430 B.9 13.9 20.2	
77 502490 Ahtanum Crat Goodman Rd at Union Gap F 91 244 430 8.9 13.9 20.2 24 500450 Yakima Rabove Ahtanum Crat Union Gap GS	3 13 40
1 508630 South Drain nr Satus F 235 367 610 12.2 18.7 23.8	10 24 30
ulphur Creek basin - 1976 Irrigation Season	
4 485010 Roza Canal at Scoon Rd nr Sunnyside 8 69 96 123 4.4 14 19.6	
4 485010 Roza Canal at Scoon Rd nr Sunnyside	1 3.5 13 2 3,8 11
6 485014 Roza Canal at Black Canyon Cr nr Sunnyside 72 96 123 7.2 14.2 20.9	2 4.4 14
7 485016 Roza Canal at Factory Rd nr Sunnyside 58 96.1 123 6.8 14.9 21.3 8 485018 Roza Canal at Wilgus Rd nr Grandyley 54 96.8 128 7.4 15.0 22.1	2 5.5 15
8 485018 Roza Canal at Milgus Rd nr Grandview 54 96,8 128 7,4 15,0 22,1 2 504510 Sunnyside Canal at Maple Grove Rd nr Sunnyside 66 103 160 8,0 14,5 20,8	2 5.8 16 3 6.4 18
3 504512 Sunnyside Canal below Sulphur Cr Wasteway	
nr Sunnyside 55 105 165 8.4 14.7 20.6 4 504514 Sunnyside Canal at Edison Rd mr Sunnyside 60 107 160 8.2 14.7 20.2	3 7.8 21
14 504514 Sunnyside Canal at Edison Rd nr Sunnyside 60 107 160 8.2 14.7 20.2 15 504516 Sunnyside Canal at Bethnay Rd nr Grandview 72 107 160 8.6 14.9 20.6	3 9.1 25 2 9.5 31
16 504518 Sunnyside Canal at Grandview 76 112 165 8.2 15.2 21.5	3 9.7 38
4 508790 DID 18 Drain at Sunnyside 365 487 680 10 16.6 23.2	16 48 200
5 508810 Washout Drain at Sunnyside 232 312 670 11 17.2 24.8 6 508820 Black Canyon Cr at Waneta Rd nr Sunnyside 285 414 600 10.5 16.7 24	3 30 117 12 43 184
6 508820 Black Canyon Cr at Maneta Rd nr Sunnyside 285 414 600 10.5 16.7 24 7 508830 DID 9 Drain nr Sunnyside 345 462 670 10.1 16.0 23	12 43 184 2 12.3 62
8 508840 DID 3 Drain nr Sunnyside 337 481 680 11.1 17.1 25	5 19.3 88
9 508850 Sulphur Cr Wasteway nr Sunnyside 195 303 435 9.6 16.0 23.7	6.0 15.5 36

TABLE 13.--Minimum, mean, and maximum values of selected water-quality characteristics at stream and canal sites in study area,
1974 irrigation season--Continued

51te No. in fig. 19	USGS No.8	Station name (abbreviated)	Source of data		issolve oxygen (mg/L)	d	(c	cal colf oliform OmL)		- (6	otal coli colonies 100 mL)	
				Hin	Mean	Max	Min	Mean	Max	M	n Mea	n Max
1 19 21 25	484500 500010 500439 500600	Yakima R at Umtanum Yakima R nr Terrace Heights Wide Hollow Cr at Goodman Rd at Union Gap N.F. Ahtanum Cr at Tampico	CE GS GS F	9.6 9.0	10.7		1,00 780 3,100 12	1,950 1,960 12,260 (b)	2,800 7,800 28,000	 	 	
26 29 37	501 600 503500 505000	S.F. Ahtanum Cr at Tampico Reservation (New, Main) Canal nr Parker Yakima R nr Parker	F F CE	10.2	 11.1	12.6	20 11 	(b) 284	88 1,000	640	2,050	11,400
38 42 43 44 45	505300 505480 505500 506000 506300	Yakima R nr Toppenish Wanity Slough at Rocky Ford Rd nr Toppenish Marion Drain nr Granger Toppenish Cr nr Ft Simcoe N.F. Simcoe Cr nr Ft, Simcoe	F F F	8.2	9.9 8.9	10.9	1,000 280 3,000 20	2,300 1,500 10,100 (b)	5,600 3,000 22,000 24	4,600	10,000	17,000
46 48 52 54	506330 507090 507510 507940	S.F. Simcoe Cr nr Ft. Simcoe Mud Lake Orain nr Harrah Toppenish Cr nr Satus	F F				20 250	1,117	340 3,000			
55 56 60 70	507950 508480 508621 508990	Satus Cr above Logy Cr nr Toppenish Logy Cr nr Toppenish Dry Cr nr Toppenish Satus Cr at Satus Yakima R at Mabton	F F F	8.6 7.9	9.2 9.8	10.3	6 86 31	(b) (b) 	35 720 44	1,300	6,800	21,000
72 78 	509489 510500	Yakima R at Prosser Yakima R at Kiona Yakima R at Granger	65 65	7.9 8.2	9.3 9.5	11.3 11.4 11.3	85	123	200	2,600 2,400 1,500	9,500 10,500 16,900	41,000 46,000 50,000
3	511800 485005	Yakima R at Yan Giesan Bridge nr Richland Roza Canal at Beam Rd nr Zillah	es ce	8.2 9.2	9,4 9.8	11.2				1,100	12,600	37,000
18 20 22	499000 500420 500440	Naches R at Yakima Moxee Drain at Birchfield Rd nr Union Gap Wide Hollow Cr at Union Gap	CE GS	 								
23 28 30 31	500445 502500 503950 504505	Wide Hollow Cr nr mouth at Union Gap Ahtanum Cr at Union Gap Yakima R at Parker Sunnyside Canal at Beam Rd nr Granger	CE CE F GE	10.7	11.4 9.4	12.8 9.9		==				
41 75	505450 509700	Granger Drain at Granger Spring Cr at Hess Rd nr Prosser	ČĒ CE					••			•••	••
76 69	509820 508850	Snipes Cr nr Prosser Sulphur Cr Wasteway at McGee Rd	CE CE			:				==	 	••
27 24 61	502490 500450 508630	Ahtanum Cr at Goodman Rd at Union Gap Yakima R above Ahtanum Cr at Union Gap South Drain nr Satus	F GS F	 			65 11	684 554	2,600 1,400	••		
Sulph	ur Creek	basin - 1976 Irrigation Season										
4 5 6 7 8	485010 485012 485014 485016	Roza Canal at Scoon Rd nr Sunnyside Roza Canal below Sulphur Cr Wasteway nr Sunnyside Roza Canal at Black Canyon Cr nr Sunnyside Roza Canal at Factory Rd nr Sunnyside	B 		••		 	 	 	 	•• •• ••	
32 33	485018 504510 504512	Roza Canal at Wilgus Rd nr Grandview Sunnyside Canal at Maple Grove Rd nr Sunnyside Sunnyside Canal below Sulphur Cr Wasteway nr Sunnyside			••	 			 	••		
34 35 36 64 65	504514 504516 504518 508790 508810	Sunnyside Canal at Edison Rd nr Sunnyside Sunnyside Canal at Bethnay Rd nr Grandview Sunnyside Canal at Grandview DID 18 Drain at Sunnyside		 	 	 	 		 			
66 67 68 69	508810 508820 508830 508840 508850	Washout Brain at Sunnyside Black Canyon Cr at Wameta Rd nr Sunnyside DID 3 Drain nr Sunnyside DID 3 Drain nr Sunnyside Sulphur Cr Wasteway nr Sunnyside	 	=======================================		 						

TABLE 13.--Minimum, mean, and maximum values of selected water-quality characteristics at stream and canal sites in study area, 1974 irrigation season--Continued

o. n ig.	USGS No. ^a	Station name (abbreviated)	Source of data	ratio	adsorp (SAR), ell (197	From	phyto	ophyll plankto rected	
9				Min	Mean	Max	Min	Mean	Max
1	484500	Yakima R at Umtanum	CE						
9	500010	Yakima R nr Terrace Heights	GS						
1	500439	Wide Hollow Cr at Goodman Rd at Union Gap	ĢS		16.5	••	••	4. 1	
5 6	500600 501600	N.F. Ahtanum Cr at Tampico S.F. Ahtanum Cr at Tampico	F F	0.3	(6)	0.3	0.4	(b)	1.
9	503500	Reservation (New, Main) Canal or Parker	F	.2 .2	(b) .3	.3 .4	1.2	2.6	6.
Ź	505000	Yakima R nr Parker	CE			'`			
В	505300	Yakima R nr Toppenish	F						
2	505480	Wanity Slough at Rocky Ford Rd nr Toppenish	F	.3	,4	.4	3.5	4.7	7.
3	505500	Marion Drain nr Granger	F	.5	.6	.,,	1,2	3.2	5.
4	506000	Tappenish Cr nr Ft. Simpoe	F	. 3	(b)	. 3	.8	(b)	. 2.
5	506300	N.F. Simcoe Cr nr Ft. Simcoe	£	.3	(b)	.4	. 0		3.
6 8	506330 507090	S.F. Simcoe Cr nr Ft. Simcoe	F	.2	(p)	3	.7	(b)	3.
2	507510	Mud Lake Orain nr Harrah Toppenish Cr nr Satus	ŕ	.8	.9 .7	1,2 .8	1.5 1.6	3.1 3.4	5. 7.
4	507940	Satus Cr above Logy Cr nr Toppenish	F	.3	(b)	.4	1.1	(b)	í
5	507950	Logy Cr nr Toppenish	F	.5 .3 .3	(b)	. 3	. 5	(b)	2
6	508480	Dry Cr nr Toppenish	F	. 3	(6)	. 4	.7	(b)	2
0	508621	Satus Cr at Satus	F	.4	.7	1.0	.1	3.2	7
•	508990	Yakima R at Mabton	F						
2 B	509489 510500	Yakima R at Prosser Yakima R at Kiona	GS						
-	310300	Yakima R at Granger	GS CE						
9	511800	Yakima R at Van Giesan Bridge nr Richland	GS -						
3	485005	Roza Canal at Beam Rd nr Zillah	CE						
В 0	499000 500420	Naches R at Yakima	CE					••	
2	500440	Moxee Drain at Birchfield Rd nr Union Gap Wide Hollow Cr at Union Gap	GS CE				••		
3	500445	Wide Hollow Cr nr mouth at Union Gap	CE						
8	502500	Ahtanum Cr at Union Gap	ČĒ						
0	503950	Yakima R at Parker	ř				.8	3.1	9
1	504505	Sunnyside Canal at Beam Rd nr Granger	CE				••		
1	505450	Granger Drain at Granger	CE				••	••	
5	509700	Spring Cr at Hess Rd nr Prosser	CE						
6 9	509820 508850	Snipes Cr nr Prosser Sulphur Cr Wasteway at McGee Rd	CE CE				·		
7	502490	Ahtanum Cr at Goodman Rd at Union Gap	F	1.3	3.5	4.6			
4 1	500450	Yakima R above Ahtanum Cr at Union Gap	GS						
•	508630	South Drain or Satus	F	.9	1.1	1.6	2.0	3.4	5
ul pi	nur Creek	basin - 1976 Irrigation Season							
4	485010	Roza Canal at Scoon Rd nr Sunnyside	В						
5	485012	Roza Canal below Sulphur Cr Wasteway nr Sunnyside							••
6	485014	Roza Canal at Black Canyon Cr nr Sunnyside							
7 8	485016 485018	Roza Canal at Factory Rd nr Sunnyside						••	
2	504510	Roza Canal at Wilgus Rd nr Grandview Sunnyside Canal at Maple Grove Rd nr Sunnyside							
3	504512	Sunnyside Canal below Sulphur Cr Wasteway							
4	504514	nr Sunnyside Sunnyside Canal at Edison Rd nr Sunnyside							
5	504516	Sunnyside Canal at Bethnay Rd nr Grandview							
5	504518	Sunnyside Canal at Grandview				••			
4	508790	DID 18 Drain at Sunmyside	••						
5	508810	Washout Drain at Sunnyside				••	••		
6 7	508820	Black Canyon Cr at Waneta Rd nr Sunnyside	••						
, B	508830 508840	DIO 9 Drain nr Sunnyside DIO 3 Drain nr Sunnyside				••			
_	508850	Sulphur Cr Wasteway nr Sunnyside							

aprefix "12" is omitted from all numbers. bMean value not given if only two values.

TABLE 14.--Range in values of selected water-quality characteristics recorded at sites on streams and canals, April-October 1974 and 1976

		Site with maximum value							
Characteristic	Value range	No.	Name						
Nitrite plus nitrate (NO ₂ + NO ₃), mg/L	0 - 5.8	68	DID 3 Drain near Sunnyside.						
Ammonia nitrogen (N), mg/L	0 - 2.2	29	Reservation (Wapato) Canal near Parker.						
Total phosphorus (P), mg/L	0.01 - 3.8	64	DID 18 Drain at Sunnyside.						
Dissolved ortho-	0 - 0.22	20	Moxee Drain at Birchfield						
phosphate phosphorus (P), mg/L		41	Road near Union Gap. Granger Drain at Granger.						
Specific conductance, umho/cm	50 - 680	64 68	DID 18 Drain at Sunnyside. DID 3 Drain near Sunnyside.						
pH units	6.9 - 9.0	79	Yakima R at VanGiesan Bridge near Richland.						
Temperature, °C	6.2 - 25	68	DID 3 Drain near Sunnyside.						
Turbidity, JTU	1 - 200	64	DID 18 Drain near Sunnyside						
Dissolved oxygen (DO), mg/L	7.2 - 12.9	69	Sulphur Cr Wasteway at McGee Rd (minimum value).						
Fecal coliform, colonies/100 mL	2 - 28,000	21	Wide Hollow Cr at Goodman Road at Union Gap.						
Total coliform, colonies/100 mL	640 - 76,000	52	Toppenish Cr near Satus.						
Sodium adsorption ratio (SAR)	0.2 - 4.6	27	Ahtanum Cr at Goodman Road at Union Gap.						
Chlorophyll a phytoplankton, mg/L	0.1 - 9.0	30	Yakima R at Parker.						

 $[\]ensuremath{^{1}\text{Except}}$ dissolved oxygen, for which minimum value is given.

TABLE 15.--Suspended-sediment concentrations and discharges at selected sites, 1976 irrigation season
[1975 irrigation-season data used for two sites as noted. Data from Nelson (1979a, 1979b)]

Site No.	USGS	Station name (abbreviated)	Concen	trations	(mg/L)	_ Discharge
in fig. 27	No.1	Station name (appreviated)	Minimum	Mean	Maximum	tons)
3	485005	Roza Canal at Beam Rd nr Zillah (1975)	4	35	126	
4	485010	Roza Canal at Scoon Rd nr Sunnyside	. 1	36	108	12,000
5 6 7	485012	Roza Canal blw Sulphur Cr Wasteway nr Sunnyside	8	52	124	
6	485014	Roza Canal at Black Canyon Cr nr Sunnyside	8	58	149	
7	485016	Roza Canal at Factory Rd nr Sunnyside	10	83	216	
8	485018	Roza Canal at Wilgus Rd nr Grandview	15	81	175	14,000
20	500420	Moxee Drain at Birchfield Rd nr Union Gap	74	507	1,320	16,000
23	500445	Wide Hollow Cr nr mouth at Union Gap	4	21	48	400
24	500450	Yakima River abv Ahtanum Cr at Union Gap	11	30	182	89,000
28	502500	Ahtanum Cr at Union Gap	4	53	. 319	3,500
32	504510	Sunnyside Canal at Maple Grove Rd nr Sunnyside	17	112	477	49,000
33	504512	Sunnyside Canal blw Sulphur Cr Wasteway nr Sunnyside	13	126	448	
34	504514	Sunnyside Canal at Edison Rd nr Sunnyside	24	167	394	
35	504516	Sumnyside Canal at Bethnay Rd nr Grandview	21	166	393	
36	504518	Sunnyside Canal at Grandview	19	199	776	61,000
39	505350	E. Toppenish Drain at Wilson Rd nr Toppenish	16	50	555	1,000
40	505410	Sub 35 Drain at Parton Rd nr Granger	10	74	206	2,400
41	505450	Granger Drain at Granger	51	632	1,400	18,000
43	505500	Marion Drain at Granger (1975)	27	82	281	11,000
51	507508	Toppensh Cr at Indian Church Rd nr Granger	19	50	486	3,300
53	507560	Coulee Drain at N Satus Rd nr Satus	31	41	93	470
57	508590	Satus Cr at Plank Rd nr Satus	8	27	60	1,000
59	508610	Satus Cr at N Satus Rd at Satus	20	85	273	8,000
61	508630	South Drain or Satus	40	140	295	6,200
62	508660	Satus Drain 302 at Hwy 22 nr Mabton	75	805	2,730	11,000
63	508690	Satus Drain 303 at Looney Rd nr Mabton	47	483	4,290	4,700
64	508790	DID 18 Drain at Sunnyside	297	1,236	4,030	
65	508810	Washout Drain at Sunnyside	10	637	1,780	
66	508820	Black Canyon Cr at Waneta Rd nr Sunnyside	84	1,238	2,960	
67	508830	DID 9 Drain nr Sunnyside	66	444	769	
68	508840	DID 3 Drain nr Sunnyside	115	580	1,570	
69	508850	Sulphur Cr Wasteway nr Sumnyside	131	445	3,270	65,000
70	508990	Yakima River at Mabton	20	58	167	160,000
71	508997	Grandview Drain at Chase Rd nr Sunnyside	68	374	875	5,000
73	509492	Namba Drain at Prosser	23	73	338	250
74	509496	Shelby Drain at Shelby Rd at Prosser	47	462	1,840	1,300
75	509700	Spring Cr at Hess Rd nr Prosser	110	425	871	10,000
76	509820	Snipes Creek nr Prosser	24	170	702	6,500
77 70	510200	Corral Canyon Cr nr Benton City	29	99	895	1,000
78	510500	Yakima River at Kiona	13	57	211	152,000

Summary: Concentrations (mg/L) Lowest minimum: 1 - Roza Canal at Scoon Rd (4)
Highest minimum: 297 - DID 18 Drain (64)
Lowest mean: 21 - Wide Hollow Creek (23)
Highest mean: 1,238 - Black Canyon Cr (66)
Lowest maximum: 48 - Wide Hollow Cr (23)
Highest maximum: 4,290 - Satus Drain 303 (63)

Discharges: Lowest: 250 - Wamba Drain (73)
(tons/season) Highest: 16,000 - Yakima River at Mabton (70)

1Prefix "12" is omitted from all numbers.

TABLE 16.--Maximum concentrations of selected pesticides recorded at three sites

[Underlined values indicate those exceeding water-quality criteria for freshwater aquatic life, according to U.S. Environmental Protection Agency, 1977b]

Site in fig. 27 (years of	Sample source		Micrograms per liter										
record)		DDD	DDE	TOO	Dieldrin	Lindane	2.4-D	2,4,5-T	Parathion	РСВ			
32 (1976)	Water	0	0	0	0	0	0.02 8-27-76	0		0			
	Bottom sediments					••		*-					
64 (All recorded 8-27-76)	Water Bottom sediments	15 	.05 20	55 <u>.10</u>	.04 2.0	<u>.:01</u>	<u></u>			0 			
78 (1968-74, 1976-77)	Water	.02 7-18-68	.02 6-27-68 8- 6-71	.04 5-19-69		 	.71 6-1-73	.01 5-25-70	0.02 3-30-73	3-12-7			
	Bottom sediments	15 12- 3-72	26 12-27-73	24 12 -27- 73									

Note: Zero concentrations were reported for all samplings for aldrin, endrin, heptachlor, and malathion.

TABLE 17.--Maximum concentrations of selected trace elements recorded during 1974-75 water years

		Co	ncentration,	in microg	ams per l	ter
Site No. in fig. 27	Station name (abbreviated)	Dissolved chromium (Cr)	Dissolved copper (Cr)	Dissolved lead (Pb)	Total mercury (Hg)	Dissolved Zinc (Zn)
25	N. F. Ahtanum Cr (11-6-73)		5	2	1,4	20
26	S. F. Ahtanum Cr (11-6-73)		3	3	.5	20
27	Ahtanum Cr at Goodman Rd (8-6-74)		4	4	.0	10
29	Reservation Canal (8-8-74)		3	3	3.3	10
30	Yakima R at Parker	<10	10	39	.2	30
42	Wanity Slough		5	5	.2	20
44	Toppenish Cr nr Ft Simcoe (8-6-74)		3	5	.1	10
45	N. F. Simcoe Cr (8-6-74)		1	0	.5	0
46	S. F. Simcoe Cr (8-6-74)		3	5	.2	10
48	Mud Lake Drain (12-4-73)		4	ì	.1	10
54	Satus Cr (8-7-74)		2	5	.0	10
55	Logy Cr (8-8-74)		3	2	.0	10
61	South Drain (2-4-74)		5	4	.1	20
78	Yakima R at Kiona 1974 WY	0	13	20	4.1	20 30
			(5-22-74)	(5-8-74)	(6-5-74)	(5-22-74)
	1975 WY	10 9 - 9-75	30 1-7-75	38 1-7-75	0.4 5-6-75	300 10-22 - 74

TABLE 18.--Quality criteria for drinking water, for constituents analyzed in surface waters in the study area

	Cr	iteria	
Constituent f	rimary drinking water	Secondary drinking water ²	
pH (units)		6.5 - 8.5	
Color			
(platinum - cobalt scale	e)	15.	
Coliform, fecal			
(colony per 100 mL) ³	1	1	
Sulfate		250 mg/L	
Nitrate as N	10 mg/L		
Arsenic	50 ug/L		
Chromium	50 ug/L		
Copper		1000 ug/L	
Iron		300 ug/L	
Lead	50 ug/L	. 	
Manganese		50 ug/L	
Mercury	2 ug/L		
Zinc		5000 ug/L	
Endrin	.2 ug/L	 .	
Lindane	4.0 ug/L	· -•	
Methoxychlor	100 ug/L		
Toxaphene	5 ug/L	·	
2, 4-D	100 ug/L		
2, 4, 5-TP Silvex	10 ug/L		

¹Adapted from U.S. Environmental Protection Agency, 1977b

²Adapted from U.S. Environmental Protection Agency, 1977c.

³The maximum contaminant level depends upon the number of samples taken and the method of determination. For the purposes of this report, the presence of any fecal coliform bacteria was considered an indication of contamination. The lowest reporting unit is 1 col/100 mL.

TABLE 19.--Quality criteria for selected industrial uses of fresh water

[Adapted from U.S. Environmental Protection Agency, 1977a]

Constituent	Steam generation boiler makeup	Steam gener- ation cooling	Textile mill products	Paper products	Chemical products	Petro- leum products	Primary metals indus- tries	Food can- ning	Bottled and soft drinks	Electric utilities	Copper
		M	aximum all	owable, in	milligram	s per lite	r unless o	therwis	e noted		
Alkalinity as CaCO ³	350	500	500-200	75-150	500	500	200	300	·85		
Hardness as CaCO ³			120	475	1,000	900	1,000			5,000	
Total dissolved solids	35,000		150	1,080	2,500	3,500	1,500				2,000
Color (cobalt- platinum units)	1,200	1,200		360	500	25					

TABLE 20.--Water-quality criteria for irrigation, for constituents analyzed in the study area

[Adapted from U.S. Environmental Protection Agency, 1977a]

Constituent	Maximum recommended concentration (ug/L: micrograms per liter; mg/L: milligrams per liter)
Arsenic	100 ug/L
Boron	750 ug/L, for long-time irrigation of sensitive crops
Total dissolved solids	500 - 5,000 mg/L, depending on crop sensitivity
Sodium adsorption ratio (SAR)	 4 for general crops 8-18 for general crops and forage, depending on soil and crop type

 $[\]ensuremath{\,^{1}}$ The degree to which calcium and magnesium in irrigation water is replaced by sodium from the soil.

TABLE 21.--Water-quality criteria for freshwater aquatic life, for constituents analyzed in the study area

[Adapted from U.S. Environmental Protection Agency, 1977a]

Constituent	Maximum recommended
На	6.5 - 9.0
Temperature (°C)	Salmon: 180C for growth; 240C for
•	short-term maximum in summer
	Trout: 190C for growth; 240C for
_	short-term maximum in summer
Dissolved oxygenl	5.0 mg/L
Alkalinity as CaCO ³	20 mg/L
Phosphorus	0.10 ug/L
Chromium	100 ug/L
Copper	0.1 times a 96-hour LC50 (Lethal concen-
•	tration that kills 50 percent of fish
	in 96 hours)
Iron	1.0 mg/L
Lead	0.01 times a 96-hour LC50
Mercury	0.05 ug/L
Zinc	0.01 times a 96-hour LC50
Aldrin/dieldren	0.003 ug/L
Chlordane	0.01_ug/L
DDT	0.001 ug/L
Endrin	0.004 ug/L
Heptachlor	0.001 ug/L
Lindane	0.01 ug/L
Malathion	0.1 ug/L
Methoxychlor	0.03 ug/L
Parathion	0.04 ug/L
Toxaphene	0.005 ug/L

1Minimum recommended

TABLE 22.--Water-quality data from selected lakes in the study area (from Dion and others, 1976a, 1976b)

						M111	igrams	per liter										
Lake No. In fig. 30	and location	of	Depth of sampling	Dis- solved oxygen	Total nitrate	Total nitrite	Total ammo- nia	Total organic nitrogen	Total phos- phorus	Total ortho- phos- phorus	Specific conduct- ance (micro- mhos)		Color (plat- inum cobalt units)	disk visi- bility	Fecal No. sam~ ples		orm bac ies/100 Nin.	
1	Mound Lake (6/31-5)	5-17-7	4 3 16	11.6 11.2	0.00	0,01 .01	0.06 .07	0.32 .50	0.080	0.007 .011	180 118	12.2 12.2	15 15	4	3	80	1	27
2	Yellepit Lake (6/31-7)	-do-	, 3 , 21	12.2 10.5	.01 .01	.01 .01	.05 .06	.55 .48	.069 .072	.005 .008	250 260	13.0 12.0	5 10	4	3	80	1	27
3	8yron Lake (8/23-12)	5-16-7	4 2	9.9 10.0	.01 .00	.01 .01	.10 .13	1.3 1.9	.18 .23	.086 .11	660 670	15.0 14.5	40 35	3	3	32	1	15
4	Horseshoe Lake (9/22-22)	-do-	0 ·1	10.5 10.5	.00	.02 .02	. 15 . 20	1.4 1.0	. 54 . 42	.086 .13	280 280	11.5 11.5	55 50	1	3	24	8	16
5	Griffin Lake (9/22-23)	-do-	2 3	10.0 10.0	.00	.02 .02	.15 .16	1.0 1.0	. 29 . 28	.093 .088	390 400	14.0 14.0	55 45	1	3	48	1	23
6	Horseshoe Lake (9/22-25)	-do-	2 3	9,7 10,0	.00	.01 .01	.12 .15	1.2 1.4	. 28 . 28	.049 .005	390 500	16.0 14.0	60 65	1	3	8	4	6
7	Morgan Lake (9/22-25)	-do-	1 3	9.8 10.0	.00 .01	.01 .01	.19 .18	1.7 2.3	.17 .18	.018 .011	260 260	15.0 14.0	50 50	1	3	2	1	1
8	Oleys Lake (9/23-7)	-do-	1	9.4,9.5	.01	.01	.10	3.4	1.3	.027	550	17.0,16.5	35	1	2	68	1	34
9	Freeway Lake (13/19-7)	5-15-7	8 3 13	12.0 10.4	.01 .01	.00	.04	.60 .53	.065 .085	.007 .005	140 140	12.0 11.3	5 5	4	3	1	1	1

TABLE 23.--Artesian wells with large flowing discharges or potentiometric heads [Discharges of 200 gal/min or more and/or heads 5 ft or more]

	-	Depth to			Potentio- metric	
Well number	Depth (ft)	aquifer ¹ (ft)	Aquifer material	Discharge 2 (gal/min)	head (ft)	Year
9/21-35H1	79	76	s		7.7	197:
-36E1	50		SR		5.0	1973
10/19-30R1	715	535(p)	SR	·	6.0	197
10/20- 9A1	863	803(c)	SR	660	59.0	195
10/21-22E1	252		\$R		28.0	196
10/22-36E1	1,057	1,010(w)	Bas		9.2	197
11/17-16H1	765	405	Bas		13.0	197
-2301					105.0	197
-2401	2,760	1,700		1,200		195
11/18-30H1	500			.,	46.2	192
11/20-2281	528	490(w)	SR	60	13.9	196
12/16-18K1	343	162(p)		90	23.0	194
,	5.0	320(w)		. ,,,	23.0	1 340
12/17-16A2	868	495		1,300		
-16D3	384	370(w)	Bas	640	58.0	195
12/18-1N1	650	600	DG3	560	50.0	193
12/19-101	1,326	1,225(p)	••	875	16.0	194:
-2K1	285	264	S, GR			
12/20-3G1	314		3, an	200	11.6	196
-4P1a	625	390		300 625	26.0	1891 1901
-5D1 a	636	475, 575, 636		254		1901
-501 a	689	525, 640, 686		491	**	1901
-502ª	736	588, 688, 736		900		
-6A18	940	700		603		1901
-6B1a	818	620, 818		495		1901
-8A1ª	525	515		515		1901
-8F2a	836	530, 820	SR	363		1901
-8314	902	702, 760, 790, 906	SR SR			1900
-8R1a	1.020	832, 1,020	3K	443 214		1896
-9C1a	623	386, 623		407		1901
_9p1a	809	615, 752		290		1901
-10N1a	631	630				1901
13/17-4J1	519	440(w)		218		1901
-26J1	153	440(W) 30		450	41.6	1969
				329	80.8	1979
3/18-24A2 -2901	1 267	74		210		1001
-2901 3/20-3112	1,267	800		336 .		1901
	1,000	605/		234		1901
13/24-25E1	777	625(w)	Bas	7,000-8,000	30.0	1955
-26G1	606			800		1942
-27K1	625	5001		1,600		1955
13/25-30G1	1,110	680(w)	Bas	1,375	189.0	1943
4/18-20G1	1,065	753		3,000	821.0	1977

¹Depth to aquifer(s) determined by depth to: p = top of first perforation or screen.

c = bottom of casing.

w = major water-yielding zone.

TABLE 24.--Highest and lowest static water levels recorded in observation wells in study area through 1977 water year

Well No. in	Well	Period of	Well	Make and a 1	Water	level (feet	below surface)		
fig. 36	No.	record	depth (ft)	Material	Highest	Date	Lowest	Date	
1	8/28- 6M1	12/72-12/77	256	Basalt	128.2	12/ 6/77	147.7	4/ 9/73	
2	10/22-25F1	5/68-12/77	1,570	do	19.7	1/ 2/74	122.0	7/31/73	
3	12/16-1302	3/51-11/77	130	do	50.37	6/15/51	124.7	9/ 9/77	
4	-1801	5/66-11/77	287	do	4.55	7/21/72	51.2	8/26/73	
5	12/17- 7M1	6/66-10/76	516	do	98.28	4/ 7/66	198.1	6/11/69	
6	- 903	1/53-12/77	479	do	66.28	7/20/53	180.8	8/28/70	
7	-16A2	2/66- 3/77	868	do	+123.0	3/29/68	81.5	3/24/77	
8	-1781	5/63- 9/77	250	do	+2.0	2/24/66	83.19	9/26/73	
9	-1701	6/59- 9/77	243	do	+2.6	5/22/62	95.4	9/14/72	
10	12/21-27A1	5/65- 9/77	295	Sandstone	200.0	1/15/66	220.5	3/21/77	
11	14/17-28L5	5/68-12/77	82	Gravel	16.1	10/24/74	23.9	7/ 1/76	

aData from G. O. Smith (1901).

TABLE 25.--Water-quality data from selected wells in the study area, 1939-61 [From Van Denburgh and Santos (1965)]

EXPLANATION

- Well location code: See page viii for description of location system. Location numbers followed by "s" denote springs.
- Owner: U.S. Government agencies are abbreviated as follows:

 A.E.C., U.S. Atomic Energy Commission; B.P.A., Bonneville Power
 Administration; U.S.A., U.S. Army; U.S.A.F., U.S. Air Force; U.S.B.R.,
 U.S. Bureau of Reclamation; U.S.F.W.S., U.S. Fish and Wildlife Service;
 U.S.F.S., U.S. Forest Service; U.S.N., U.S. Navy; U.S.N.F.S., U.S.
 National Park Service. In addition, A.F.B. indicates U.S. Air Force
 base.
- Approximate altitude: Altitude of land-surface datum at well, from publications of the Washington State Department of Conservation or the U.S. Geological Survey, or from topographic maps of the U.S. Geological Survey.
- Depth of water-bearing interval: Depth of interval or intervals below land surface, from publications of the Washington State Department of Conservation or the U.S. Geological Survey, or inferred from well logs on file with the above agencies.
- Sample collection date: Analyses of waters reported by the sample collector to be chlorinated are indicated by "c" following collection date.
- Iron: Total iron concentrations are followed by a "t". All other values represent iron in solution at the time of sample collection.

TABLE 25.--Water-quality data from selected wells in the study area, 1939-61--Continued

		ide /e1					(°F)		Part	s per mi	llion	
Well location code	Owner	Approx. altitude above sen lovel (in feet)	Well depth (in feet)	Depth of vater-bearing incerval (in feet)	Water-bearing material	Sample collect- ion dace	Temperature (Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)
				ВЕ	ктом соинт	Y						
8/24-2J2	City of Prosser (well 2)		502	485-502?	Basalt	10/30/59 5/5/61	66 63	59	. 05	14	5.1	43
8/24-2H	City of Prosser (well 3)	ļ	599	530-599	Basalt	10/30/59	63 60		0.12	17	6.1	54
8/24-2Q	City of Prosser (well 4)		744	720-744	Basalt	5/11/61	60	46	.06t	16	6.6	46
8/30-24N	Phillips Pacific Chemical Co.		41	18-39	Sand, gravel	10/30/59 5/23/60	54 58	25	.03	30	6.9	7.6
10/26-11D1	U. S. Government (A.E.C.)	1,320	420	338-420	Basalt	3/24/59		51	.68	38	21	13
10/28-1781	U. S. Government (A.E.C., well 12)	458	228	220-224	Basalt	6/15/51		18		9.2	3.8	25
11/26-3G1	U. S. Government (A.E.C., well 3)	514	200	116-140	Gravel, sand	8/13/51		24		23	11	12
11/26-5B1	U. S. Government (A.E.C., well 4)	550	168	121-168	Gravel, sand	8/14/51		41		30	10	12
11/27-201	U. S. Government (A.E.C., well 5)	520	200	143-168	Sand, gravel	6/14/51		22	•- `	37	8.3	17
11/27-5Q1	U. S. Government (A.E.C., well 2)	555	204	169-185	Gravel, sand	6/14/51		25		39	9.0	17
11/27-20M1	U. S. Government (A.E.C., well 7)	526	321	293-321	Basalt	6/15/51		. 46	••	36	9.9	17
11/27-26D1	U. S. Government (A.E.C., well 6)	506	148	116-135	Gravel, sand	5/16/51		31		39	11	29
11/28-1701	U. S. Government (A.E.C., well 8)	475	148	107-141	Gravel, sand	5/15/51		31	••	36	10	16
11/28-29N1	U. S. Government (A.E.C., well 11)	433	110	69-108	Gravel, sand	9/12/51		24		29	7.6	20
12/25-302	U. S. Government (A.E.C.)	646	307	244-256	Silt, sand, gravel	2/5/53		4.3	01	22	6.1	14
12/25-29 NE 1/4s	U. S. Government (A.E.C.) (Rattlesnake Spring)			••	••	9/12/60		36	.03	22	10	7.2
12/26-25QI	U. S. Government (A.E.C.)	549	203	169-182	Sand, gravel	8/19/53		20		34	9.6	16
12/28-1801	U. S. Government (A.E.C., well 10)	498	164	117-133	Sand, silt, gravel	9/12/51		10		28	8.8	17
12/28-3181	U. S. Government (A.E.C.)	433	105	65-77	Sand, gravel	2/6/53 6/10/53		30 19	. 02	42 47	10 9.5	13 14
13/24-25E1	U. S. Government (A.E.C.)	924	777	625-777	Basalt	11/30/51	75	65	.02t	19	12	27
13/24-26G1	U. S. Government (A.E.C.)		705	695-705	Basalt	12/1/51	68	60	.06t	20	12	27

				Parts	per mil	lion								
Fotas- sium (K)	Ricar- bonate (HCO ₃)	Carbon- ate (CO ₃)	Sulfate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Nitrate (NO ₃)	Ortho- phos- phate (PO ₄)	Dissolve Calcu- lated	Residue on evap- at 180°C	Hardness (88 CaCO ₃)	Specific conductance (Micromhos at 25°C)	рH	Color	Sampling site number
				• · · · · · · · · · · · · · · · · · · ·	В	ENTO	и со	UNTY						
12	187 222	0	4.8	6.5	.6	.2	.11	237	229	56 68	326 376	7.7 7.9	0	20
9.8 	221 214	0	0.1	11	0.9	0.2	0.08	258 	248	68 67	388 370	7.5 7.8	0	21
10	202	0	-6	9.5	.7	.1	. 09	236	236	67	336	7.8	5	22
4.1 	137 111	0	9.1	1.2	.2	.2	.16 	151	159	103 91	238 217	7.9 7.7	0	23
4.8	176	0	43	7.5	. 2	4.5		270	262	182	397	7.7	5	24
4.8	58	16	2.1	10	1.0	.3		119	130	39	206	9.2	5	25
4.6	126	0	20	5.9	.4	1.8		168	165	103	258	8.0	20	26
4.6	143	0	22	4.5	.4	1.7		202	195	116	270	8.2	20	27
8.0	147	0	33	8.0	.2	5.8		212	203	126	321	7.9	5	28
6.1	151	0	40	6.5	.3	5.5		223	220	134	343	7.9	5	29
10	162	0	40	6.1	.3	-1	1.	245	238	130	343	7.9	5	30
9.1	i99	0	15	26	1.0	1.0		260	252	143	418	7.4	5	31
6.9	158	ò	33	7.0	.4	4.3		222	224	-131	338	7.5	5	32
7.2	136	0	32	6.0	.5	.8		194	187	104	281	8.0	5	33
3.9	80	0	31	11	.3	1.4		133	136	80	182	8.3	4	34
1.7	114	0	11	2.8	.3	4.5		152	154	96	221	7.8	5	35
6.8	150	0	32	7.2	.1	.8		200	194	124	318	8.2	5	. 36
7.7	145	0	20	6.8	.3	.3		170	164	106	284	7.8	5	37
4.8 5.2	149 158	0	35 34	8.4 11	.3	16 14		233 232	233 244	146 156	351 374	7.8 7.6	3	38
8.5	189	0	1.8	5.8	.5	.1		233	215	97	291	7.8	5	39
6.7	193	o	1.5	5.5	.5	.0		228	218	99	292	7.8	5	40

TABLE 25.--Water-quality data from selected wells in the study area, 1939-61--Continued

		₽ -				<u> </u>	(°F)		Pari	S Per mi	llion	
Well location code	Owner	Approx. altitude above sea level (in feet)	Well depth (in feet)	Depth of water-bearing interval (in feet)	Water-benting material	Sample collect- ion date	Temperature (Silica (SiO _:)	Iron (Fe)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)
				BENTO	N COUNTY Co	ntinued		· ·		_		
13/24-3601	U. S. Government (A.E.C.)	909	1,092	936- 1,092	Basalt	11/29/51	74	64	. 03	18	11	29
13/25-1N2	U. S. Government (A.E.C.)	420	790	764-769	Baselt	9/21/53		39		19	11	22
13/25-7M1	U. S. Government (A.E.C.)	450	93	62-93	Gravel	9/2/53	60	25	. 07 t	26 -	6.7	3.5
13/25-30G1	U. S. Government (A.E.C.)	831	1,110	700- 1,110	Basalt	12/1/51 9/2/53 10/28/54 10/24/56	82 87 84 70	62 64 67 62	.02t .08 .04 .06	17 18 17 17	9.4 10 9.4 9.3	30 30 30 30
13/26-5D2	U. S. Government (A.E.C.)	465	170	126-139, 154-164	Gravel, sand	10/3/52	62	34	0.76t	31	9.7	9.3
13/26-13R1	U. S. Government (A.E.C.)		64			3/31/54	64				••	
13/26-13R2	U. S. Government (A.E.C.)	420	68	33-63	Gravel	4/6/54	64	39	. 05 t	23	10	23
13/27-1661	U. S. Government (A.E.C.)	405	84	53-75	Gravel	10/25/56	58	36	. 05	77	20	34
· · · · · · · · · · · · · · · · · · ·			·	Y A	KIMA COUNTY	Y						
9/22-12H	A. C. Pride		100	96-1007	Gravel?	5/5/61	61	57	.01	48	14	17
10/20-3N2	City of Toppen- ish (well 2)		160		Gravel	1/26/39	57	32	. 05	22	7.9	6.8
10/20-9A	City of Toppen- ish (well 6)		863	792-863	Sand, gravel	10/19/59 5/19/60	69 60	68	.08	13	2.2	19
12/16-1301	Herke Brothers	1,800	146	130-140	Basalt	8/30/51		54	. 06	16	9.7	10
12/16-1731	S. A. Mondor	2,050	11		Gravel	8/30/51		47	.11	10	5.8	5.6
12/17-1603	Oral Brown	1,510	384	325-384	Basalt	10/21/59 5/19/60	60	53	.05	13	5.3 	17
12/17-16R1	B. S. Borton & Sons	1,550	1,078	1,035- 1,078	Basalt	4/18/52	63	38	.27	12	6.6	7.2
12/18-5G2	H. E. Anderson	1,190	10	3-10	Sand, gravel	8/29/51		52	.03	23	12	19
12/18-5J1	Joel Richwine	1,170	18	17-18	Sand	8/29/51		51	.02	24	14	16
12/18-11E1	S. H. Schreiner	1,170	213	205-213	Sand, gravel	8/30/51		61	. 03	30	16	9.6
12/23-13B	Woodrow Wright		153			5/5/61	61	54	. 20t	28	11	11
13/19-31J1	Yakima Farmers Supply Company	1,015	84	75-847	Sand, gravel	8/29/51		39	. 02	34	11	12
14/18-3Nls	H. E. Mulford (spring)					11/19/48	59	66	.05	32	19	13
14/18-12D	John Knopp		124	100-1247	Gravel	11/22/48		58	.26	42	19	23
14/18-13R2	B. Barnheart		60			11/19/48		53	. 03	60	26	62

				Farts	per mil	lion					_			
otas- sium (K)	Bicar- honate (HCO ₃)	Carbon- ate (CO ₃)	Sulfate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Nitrate (NO ₃)	Ortho- phos- phate (PO ₄)	U:ssolve Calcu- lated	Residue on evap. at 180°C	!!ardness (88 CaCO ₃)	Specific conductance (Micromhos at 25°C)	рН	Color	Sampling site
					BEN	TON	соин	т ч с	ontinued			•	·	
6.7	184	0	1.8	5.4	. 6	.1		227	213	90	277	7.7	5	41
11	143	0	23	8.0	.4	.0		203	216	93	296	7.6	0	42
1.8	100	0	15	1.5	. 2	1.1		130	128	92	191	7.5	5	43
9.9 6.3 7.7 8.2	181 180 178 178	0 0 0	1.6 2.1 2.1 -4	4.8 5.2 5.1 4.0	.6 .7 .6	.1 .2 .0 .2	::	225 225 227 221	213 216 214 207	81 86 81 81	277 289 291 286	7.8 7.7 7.4 8.0	5 5 5 - 0	44
4.9	144	, 0	16	2.7	0.2	2.1		181	176	117	266	7.8	2	4.
				2.0						104	283	 I		4
4.8	150	0	18	3.0	.5	4.5		200	202	98	292	8.2	0	4
6.6	239	0	113	22	.3	6.0		433	431	274	647	7.7	0	4
		1	i		<u> </u>	l	A CO	UNTY	<u>. </u>	<u> </u>	<u></u>	L	1	1
7.4	190	0	44	11	.4	2.3	. 07	295	315	179	425	7.9	5	54:
1.9	113	0	5.1	2.7	.0	2.0		136	136	87				544
4.1	105 105	0	.3	1.0	.6	. 2		160	158	42 42	171 173	7.8	0	54
1.8	116	0	4.4	3.0	.2	1.6		158	155	80	194	7.7	5	54
3.7	74	0	2.4	.7	.2	1.0		113	111	49		7.3	10	54
3.2	113 111	0	.4	1.8	.5	.1		150	149	54 54	185 179	7.9 8.2	0	54
3.1	85	0	4.4	1.2	.3	. 2		115	114	57	136	7.9	8	54
5.3	160	0	8.0	11	.2	1.5		211	209	107	285	7.2	25	55
5.6	180	0	5.1	2.5	.3	1.8		209	205	117	284	7.2	25	55
3.2	133	0	29	18	.3	2.7		235	251	141	315	7.3	5	55
2.9	131	. 0	17	6.5	.6	4.1	.15	200	217	114	274	7.8	5	55
4.8	116	0	21	26	.3	6.0		211	221	130	320	7.3	15	5.5
5.8	193	0	18	9.1	.2	3.1		261	262	158	370	7.6		55
2.9	210	0	21	20	.4	16		306	309	183	437	8.3	·	5.5
4.8	442	0	20	5.2	.4	6.2		455	445	256	676	7.7		55

TABLE 25.--Water-quality data from selected wells in the study area, 1939-61--Continued

		de					E.		Par	to per mi	llion	
Well location code	Owner	Approx. altitude above sea level (in feet)	Well depth (in feet)	Depth of vater-bearing interval (in feet)	Water-bearing material	Sample collect- ion date	Temperature (Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)
				YAKI	MA COUNTY	Continued		•				
14/19-19G	H. B. Larson		134	117-1347	Sand?	5/5/61	54	57	.00	84	31	58
14/19-288?	U. S. Government (U.S.A.)		600?		Basalt	4/20/51 9/29/53 11/29/54 10/5/55 10/25/56 1/6/58 3/30/59 9/14/60	68	56 59 53 50 49 51 52	.04 .15 .06 .08 .06 .03 .05	15 16 16 16 15 16 17 15	11 11 9.4 11 10 11	19 19 19 19 19 18 18
14/19-28F?	U. S. Government (U.S.A.)		548		Basalt?	4/20/51 9/18/52 9/29/53 11/29/54 10/5/55	65 63 61 60 59	50 50 53 48 45	.05 .12 .20 .12 .08	35 25 36 33 34	19 15 18 17 17	32 27 32 31 30
14/19-28 NE 1/4	U. S. Government (U.S.A.)		590	••	Basalt	9/17/52 11/29/54 10/5/55	66 62 63	52 49 49	.11 .86 .27	17 17 17	10 10 9.3	22 21 20
15/17-1301	G. E. Cameron		385	360-385?	Sand, basalt?	11/22/48	55	42	.13	12	7.3	23
15/18-33P1	R. H. Kershaw		400		Sand	11/22/48		59	. 04	23	12	13
16/14-1J1	U. S. Government (U.S.F.S.)		200		Basalt	5/4/59		24	. 79	84	10	45
16/14-1R1	U. S. Government (U.S.F.S.)		41	36-41	Sand, gravel	11/4/59		25	. 03	26	5.2	7.9
16/17-1921	G. S. Green	[115		Sand	11/19/48		61	0.08	16	9.2	8.8
16/17-32Jls	Malotte (spring)					11/19/48	62	53	. 06	12	6.6	17

	1		-					lion	per mil	Parts				
Sampling site	Color	рH	Specific conductance (Micromhos at 25°C)	Hardness (as CaCO ₃)	d solids Residue on evap. at 180°C	Dissolve Calcu- laced	Ortho- phos- phate (PO ₄)	Nitrace (NO ₂)	Fluo- ride (F)	Chlo- ride (Cl)	Sulfate (SO ₄)	Carbon- ace (CO ₃)	Bicar- bonste (HCO ₃)	Potas- sium (K)
<u> </u>					inued	Y Cont	דאטס	на с	YARI		· .~.			
558	5	7.9	823	338	559	544	. 83	7.0	.6	13	60	0	459	6.3
559	4 7 0 0 5	8.0 7.8 7.6 8.1 7.8 7.8 7.8	235 244 235 238 234 236 239 220	83 85 85 79 83 81 87	179 176 172 173 174 171 174	187 187 183 175 176 178 178		.0 .1 .7 .0 .2 .0	5 .5 .5 .5 .4 .5	4.1 3.8 4.4 3.5 4.0 4.0 3.5	.7 .7 1.8 .2 .7 .3	0 0 0 0 0	151 149 148 147 149 147 146	6.2 3.6 3.6 4.0 3.5 3.6 4.0
560	3 2 8 6	7.7 7.6 7.5 7.3	429 344 441 425 432	165 124 164 152 155	284 231 293 272 280	299 238 297 280 277	::	2.0 .5 3.8 8.5 8.1	.6 · .5 .6 .5	9.2 6.4 8.8 9.2 8.2	23 12 23 21 21	0 0 0	246 198 239 218 222	7.2 4.1 4.5 4.4
561	3 8 0	7.9 7.7 7.7	246 249 247	84 84 81	178 183 175	188 185 179	 	.7	.5 .5 .5	4.3 4.9 4.5	1.2 1.4 .2	0	154 154 151	4.5 4.3 4.6
562		7.2	213	60	167	163		.1	.4	2.0	9.8	0	124	5.0
563		7.5	266	107	205	200		2.1	. 2	5.2	10	0	146	4.0
564	10	7.1	701	250	416	386		.0	.1	106	17	0	200	.7
565	0	7.0	208	86	140	136		1.2	.1	3.5	18	0	98	1.3
566		7.4	202	78	162	164		0.7	0.2	2.4	3.3	0	116	4.8
567		7.7	185	57	158	156	[.3	.4	1.8	.9.2	0	104	4.3

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977

Benton County

Logal				Seq.	Date of		Depth to top of water- bearing zone	Depth to bottom of sample interval	Depth to top of sample interval
Local identifier	Station number	Latitude	Longitude	No.	sample	Time	(ft)	(ft)	(ft)
10/28E-11003	462224119162601	46 22 24	119 16 26	01	77-04-25	1130		70	25
10/28E-11F03	462206119162301	46 22 06	119 16 23	01	77-04-25	0945			
10/28E-14D01	462126119164701	46 21 26	119 16 47	01	76-04 - 05	0930	42	79	59
11/27E-02Q01	462732119233501	46 27 32	119 23 35	01	76-04-05	1330	126	166	126
11/27E-26C01	462500119240101	46 25 00	119 24 01	01	77-04-25	1405		132	117
11/28E-09R01	462648119180701	46 26 48	119 18 07	01	77-04-25	1520			
11/28E-23D01	462552119164101	46 25 52	119 16 41	01	76-04-05	1130	47	200	47
11/28E-29P01	462420119201201	46 24 20	119 20 12	01	77-04-25	1240		88	68
12/25E-11R01	463212119381301	46 32 12	119 38 13	01	77-04-28	1130		279	180
12/26E-04N01	463300119341401	46 33 00	119 34 14	01	77-04-27	1525		374	359
12/26E-07B01	463242119361901	46 32 42	119 36 19	01	76-04-08	1335	256	380	256
12/26E-07Q01	463207119361601	46 32 07	119 36 16	oi	76-04-08	1230	240	320	255
12/26E-12H01	463228119294701	46 32 28	119 29 47	01	76-04-08	1020	286	495	286
12/26E-13A01	463200119293201	46 32 00	119 29 32	ŏi	76-04-08	0910	136		
12/26E-13H01	463146119293901	46 31 46	119 29 39	Õi	76-04-06	1530	112	119	112
					77-04-26	1505		119	109
12/26E-15C01	463155119325201	46 31 55	119 32 52	01	76-04-09	1020	312	440	315
12/206-13001	403133113323201	40 31 33	113 36 36	٠.	77-04-28	1010		440	315
12/26E-18E01	463143119364501	46 31 43	119 36 45	01	76-04-08	1130	210	485	210
12/26E-25Q01	462928119295101	46 29 28	119 29 51	õi	77-04-28	1345		185	127
10/075 00001	4007433300003303	46 07 43	110 25 21	01	76-04-07	1510	110	160	710
12/27E-03N01	462741119253101	46 27 41 46 33 01	119 25 31 119 27 32	01	77-04-26	1330		185	115
12/27E-05001	463301119273201	46 31 38	119 27 32	01	76-04-26	1220	116	169	116
12/27E-15G01	463138119244801	40 31 30	119 24 40	UI	77-04-26	1205		169	111
12/27E-20P01	463019119273601	46 29 29	119 27 36	01	76-04-06	1345	121	164	129
12/2/6-20/01	4030131132/3001	40 29 29	113 27 30	01	70-04-03	1343	121	704	
12/27E-24M01	463035119230401	46 30 35	119 23 04	01	76-04-06	1050	45	150	45
12/27E-27R01	462937119242501	46 29 37	119 24 25	01	76-04-06	0930	105	155	105
12/27E-33J01	462856119255101	46 28 56	119 25 51	01	76-04-05	1605	123	150	123
12/28E-18D01	463152119215001	46 31 52	119 21 50	01	76-04-07	1205	116	135	120
12/28E-19F01	463049119213201	46 30 49	119 21 32	01	76-04-07	1045	73	145	80
					77-04-26	1030		145	80
12/28E-28Q01	462940119282501	46 29 40	119 18 25	01	77 - 04-26	0905		307	297
13/25E-11H01	463743119384401	46 37 43	119 38 44	01	77-04-27	1215		102	49
13/25E-30G01	463510119441301	46 35 10	119 44 13	01	77-04-27	1320		280	165
13/26E-31K01	463414119362501	46 34 14	119 36 25	01	77-04-27	1420		302	251
13/26E-34C01	463432119325001	46 34 32	119 32 50	01	76-04-08	1540	124	135	125
					77 -04 -27	0945		1 35	1 25
13/26E-34D01	463425119330901	46 34 25	119 33 09	01	76-04-08	1445	148	161	148
13/27E-31NO1	463349119293601	46 33 49	119 29 36	01	77-04-28	1235		180	156
14/26E-28G01	464024119340001	46 40 24	119 34 00	01	77-04-27	1100		78	50

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Elev. of land surface datum (ft. above msl)	Pump or flow period prior to sam- pling (min)	Spe- cific con- duct- ance (micro- mhos)	Ph (units)	Temper- ature (°C)	Color (plat- inum- cobalt units)	Turbidity (JTV)	Hardness (Ca, Mg) (mg/L)	Non- car- bonate hard- ness (mg/L)
10/28E-11C03 10/28E-11F03 10/28E-14D01 11/27E-02Q01 11/27E-26C01	77-04-25 77-04-25 76-04-05 76-04-05 77-04-25	375 378 388 522 504	30 40 30 25 30	330 302 395 436 420	8.0 7.5 7.8 8.0 7.8	15.9 17.5 16.7 18.4 18.0	2 1 0 5	0 1 0 10 0	110 96 150 150 140	28 6 0 29 0
11/28E-09R01 11/28E-23D01 11/28E-29P01 12/25E-11R01 12/26E-04N01	77-04-25 76-04-05 77-04-25 77-04-28 77-04-27	440 398 435 661 748	30 25 30 30 30	352 223 395 241 405	8.0 9.4 7.9 8.0 7.7	17.0 16.8 17.3 15.0 21.4	1 2 2 1	0 4 2 1 0	140 78 150 74 170	17 0 25 0 30
12/26E-07801 12/26E-07Q01 12/26E-12H01 12/26E-13A01 12/26E-13H01	76-04-08 76-04-08 76-04-08 76-04-08 76-04-06	711 694 690 540 516	25 25 25 25 25 30	850 489 367 433 425	7.6 7.7 8.0 7.9 7.9	20.7 20.4 21.0 20.6 19.6	1 2 0 0 5	1 10 2 1 5	350 190 95 140 110	220 0 0 25 0
12/26E-15C01 12/26E-18E01 12/26E-25Q01	77-04-26 76-04-09 77-04-28 76-04-08 77-04-28	516 717 717 668 573	30 25 30 25 30	420 416 420 297 380	7.8 7.8 7.7 7.8 7.8	19.8 21.7 21.5 20.5 18.1	2 4 1 10	4 4 1 28 0	140 150 170 120 150	35 0 1 5 46
12/27E-03N01 12/27E-05Q01 12/27E-15G01 12/27E-20P01	76-04-07 77-04-26 76-04-06 77-04-26 76-04-06	509 518 518 518 524	25 30 25 30 25	430 324 515 522 455	8.0 8.0 8.0 7.9 7.9	18.5 18.1 18.2 18.4 19.4	0 2 1 1 0	1 2 1 1 0	160 51 190 180 170	38 0 73 75 36
12/27E-24M01 12/27E-27R01 12/27E-33J01 12/28E-18001 12/28E-19F01	76-04-06 76-04-06 76-04-05 76-04-07 76-04-07	443 506 524 500 466	25 25 30 25 25	461 460 445 362 468	8.0 7.9 7.9 8.0 8.0	17.2 17.5 18.5 17.3 16.3	0 0 1 0	0 0 0 1 1	170 180 160 140 180	45 62 40 8 58
12/28E-28Q01 13/25E-11H01 13/25E-30G01 13/26E-31K01	77-04-26 77-04-26 77-04-27 77-04-27 77-04-27	466 467 472 837 688	30 30 30 30 30	485 298 310 285 317	7.8 8.0 7.6 8.0 7.9	16.5 19.3 39.1 26.8 19.3	1 1 1 1	0 1 0 0 3	190 130 130 80 130	72 12 34 0 35
13/26E-34C01 13/26E-34D01 13/27E-31N01 14/26E-28G01	76-04-08 77-04-27 76-04-08 77-04-28 77-04-27	530 530 553 577 458	25 30 25 30 30	580 635 927 285 194	8.2 8.2 7.6 8.0 7.9	17.0 17.4 16.4 18.8 20.7	3 1 1 2 1	4 2 0 2 0	190 220 320 110 87	99 140 200 10 25

TABLE 26.--Water quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Dissolved calcium (Ca) (mg/L)	Dissolved magnesium (Mg) (mg/L)	Dissolved sodium (Na) (mg/L)	Dissolved potassium (K) (mg/L)	Bicar- bonate (HCO3) (mg/L)	Carbonate (CO3) (mg/L)	Alkalinity as CaCO3 (mg/L)	Carbon dioxide (CO ₂) (mg/L)	Dissolved sulfate (SO4) (mg/L)
10/28E-11C03 10/28E-11F03 10/28E-14D01 11/27E-02Q01 11/27E-26C01	77-04-25 77-04-25 76-04-05 76-04-05 77-04-25	33 29 44 44 41	5.5 5.8 8.8 9.9 9.8	21 22 21 21 32	3.1 3.9 6.5 7.3 7.6	94 110 191 148 200	0 0 0 0	77 90 157 121 160	1.5 5.6 4.8 2.4 5.1	25 27 29 61 12
11/28E-09R01 11/28E-23D01 11/28E-29P01 12/25E-11R01 12/26E-04N01	77-04-25 76-04-05 77-04-25 77-04-28 77-04-27	38 26 43 19 43	11 3.1 9.8 6.4 15	17 17 23 23 17	6.0 7.0 5.6 3.2 5.3	150 53 150 120 170	0 23 0 0	120 82 120 98 140	2.4 .1 3.0 1.9 5.4	40 25 43 13 39
12/26E-07B01 12/26E-07Q01 12/26E-12H01 12/26E-13A01 12/26E-13H01	76-04-08 76-04-08 76-04-08 76-04-08 76-04-06	92 51 25 37 38	29 16 7.9 11 2.9	21 28 41 32 29	7.3 6.6 8.4 7.3 7.0	154 242 184 138 143	0 0 0 0	126 198 151 113 117	6.2 7.7 2.9 2.8 2.9	33 30 45 54 52
12/26E-15C01 12/26E-18E01 12/26E-25Q01	77-04-26 76-04-09 77-04-28 76-04-08 77-04-28	37 41 46 28 43	12 12 14 12 11	29 25 24 16 18	5.3 6.1 5.7 4.3 5.7	130 209 210 140 130	0 0 0 0	110 171 170 115 110	3.3 5.3 6.7 3.6 3.3	55 41 34 27 67
12/27E-03N01 12/27E-05Q01 12/27E-15G01 12/27E-20P01	76-04-07 77-04-26 76-04-06 77-04-26 76-04-06	46 14 53 51 47	12 3.9 13 13	22 52 29 29 25	7.3 7.5 7.2 6.5 7.6	154 200 138 130 164	0 0 0 0	126 160 113 110 135	2.5 3.2 2.2 2.6 3.3	66 2.7 65 64 67
12/27E-24M01 12/27E-27R01 12/27E-33J01 12/28E-18D01 12/28E-19F01	76-04-06 76-04-06 76-04-05 76-04-07 76-04-07	48 53 46 40 54	11 11 12 9.5 11	23 20 22 19 19	7.1 8.0 7.3 5.5 6.9	146 141 151 160 149	0 0 0	120 116 124 131 122	2.3 2.8 3.0 2.6 2.4	55 53 62 33 50
12/28E-28001 13/25E-11H01 13/25E-30G01 13/26E-31K01	77-04-26 77-04-26 77-04-27 77-04-27 77-04-27	55 35 43 17 32	12 9.5 5.9 9.2 13	20 13 10 29 10	6.3 5.9 4.9 7.8 3.6	140 140 120 170 120	0 0 0 0	710 110 98 140 98	3.6 2.2 4.8 2.7 2.4	52 24 42 1.4 24
13/26E-34C01 13/26E-34D01 13/27E-31N01 14/26E-28G01	76-04-08 77-04-27 76-04-08 77-04-28 77-04-27	57 63 85 25 27	12 15 25 11 4.6	39 43 53 18 2.9	10 11 9.7 4.5 2.4	113 100 138 120 75	0 0 0 0	93 82 113 98 62	1.1 1.0 5.5 1.9 1.5	150 190 99 29 16

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Dis- solved chlo- ride (C1) (mg/L)	Dis- solved fluo- ride (F) (mg/L)	Bromide (Br) (mg/L)	Iodide (I) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved solids (resi- due at 180°C) (mg/L)	Total filt- rable residue (mg/L)	Dis- solved solids (sum of consti- tuents) (mg/L)	Dis- solved solids (tons per ac-ft)
10/28E-11C03 10/28E-11F03 10/28E-14D01 11/27E-02Q01 11/27E-26C01	77-04-25 77-04-25 76-04-05 76-04-05 77-04-25	31 12 8.1 11 22	0.5 .9 .4 .4 1.3	0.1 7.0 .1 .1	0.00 .00 .00 .00	13 19 35 35 38	190 185 259 284 255	270 280 430 430 440	179 182 247 263 263	0.26 .25 .35 .39 .35
11/28E-09R01 11/28E-23D01 11/28E-29P01 12/25E-11R01 12/26E-04N01	77-04-25 76-04-05 77-04-25 77-04-28 77-04-27	7.1 3.7 18 6.9 8.3	.4 .5 .6 .5 .4	.1 .2 .0	.00 .00 .00 .00	34 31 32 36 50	227 174 251 161 269	370 280 380 280 460	228 163 250 168 263	.31 .24 .34 .22 .37
12/26E-07B01 12/26E-07Q01 12/26E-12H01 12/26E-13A01 12/26E-13H01	76-04-08 76-04-08 76-04-08 76-04-08 76-04-06	32 16 3.6 11	.4 .4 .6 .7	.2 .2 .0 .0	.01 .01 .01 .00	47 39 48 42 40	614 317 252 297 295	1,100 640 460 540 500	338 307 270 263 251	. 84 . 43 . 34 . 40 . 40
12/26E-15C01 12/26E-18E01 12/26E-25Q01	77-04-26 76-04-09 77-04-28 76-04-08 77-04-28	12 7.3 7.7 16 6.9	.7 .4 .5 .4 .5	.1 .0 .1 .1	.00 .00 .00 .01	39 40 44 30 28	278 272 274 196 248	450 500 490 420 400	255 276 281 203 245	.38 .37 .37 .27 .34
12/27E-03N01 12/27E-05Q01 12/27E-15G01 12/27E-20P01	76-04-07 77-04-26 76-04-06 77-04-26 76-04-06	8.5 3.6 17 28 9.2	.4 .9 .4 .4	.1 .0 .0 .1	.00 .01 .01 .00	35 45 31 31 42	291 221 351 339 317	530 370 510 480 490	273 229 284 288 292	.40 .30 .48 .46 .43
12/27E-24M01 12/27E-27R01 12/27E-33J01 12/28E-18D01 12/28E-19F01	76-04-06 76-04-06 76-04-05 76-04-07 76-04-07	13 14 9.8 8.7 13	.4 .4 .5 .4	.0 .1 .1 .1	.00 .00 .00 .00	36 36 36 31 34	319 316 299 235 314	480 470 460 460 550	266 265 270 226 262	.43 .43 .41 .32 .43
12/28E-28Q01 13/25E-11H01 13/25E-30G01 13/26E-31K01	77 -04-26 77 -04 -26 77 -04-27 77 -04-27 77 -04-27	12 6.4 6.6 4.5	.3 .2 .8	.1 .1 .1 .1	.00 .00 .00 .01	36 32 46 55 39	313 193 221 201 208	480 310 360 380 370	264 196 219 209 193	.43 .26 .30 .27
13/26E-34C01 13/26E-34D01 13/27E-31N01 14/26E-28G01	76-04-08 77-04-27 76-04-08 77-04-28 77-04-27	23 23 9.2 3.8 2.5	.5 .5 .9 .6	.4 .2 .1 .0	.00 .00 .01 .00	31 32 38 47 17	396 433 644 200 121	600 600 1,000 350 210	379 428 388 199 110	.54 .59 .88 .27 .16

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Total nitrate (N) (mg/L)	Total nitrite (N) (mg/L)	Yotal ammonia nitro- gen (N) (mg/L)	Total phos- phorus (P) (mg/L)	Dis- solved alum- inum (Al) (ug/L)	Dis- solved arsenic (As) (ug/L)	Dis- solved barium (Ba) (ug/L)	Dis- solved beryl- lium (Be) (ug/L)	Dis- solved bismuth (Bi) (ug/L)
10/28E-11C03	77-04-25	4.1	0.00	0.03	0.07	20	2	0	0	<450
10/28E-11F03	77-04-25	3.3	.01	.03	.08	20	ī	ŏ	. ŏ	<450
10/28E-14D01	76-04-05	3.2	.00	.01	.04	10	6	6Ŏ	< Ž	<8
11/27E-02Q01	76-04-05	5.7	.00	.09	.04	20	8	40	< 2	<8
11/27E-26C01	77-04-25	.95	.00	.02	.04	10	9	0	10	<450
11/28E-09R01	77-04-25	1.9	.00	.02	.02	10	7	0	10	<450
11/28E-23D01	76-04-05	3.1	.13	.11	.04	40	16	20	<1	< 5
11/28E-29P01	77-04-25	1.9	.00	.04	.05	Q.	5	0	10	<450
12/25E-11R01	77-04-28	.24	.00	.04	.07	0	3	0	0	< 450
12/26E-04N01	77-04-27	4.4	.00	.04	.02	0	2	0	0	<450
12/26E-07B01	76-04-08	58	.00	.04	.03	10	2	100	< 4	<15
12/26E-07Q01	76-04-08	5.2	.00	.04	. 05	.10	1	50	· <3	<10
12/26E-12K01	76-04-08	21	.00	.04	.03	10	6	40	< 2	<8
12/26E-13A01 12/26E-13H01	76-04-08	10	.00	.04	.03	20	4	50	< 2	<9
12/20E-13NU1	76-04-06	7.8	.01	.08	.02	20	7	40	< 2	<9
10/005 15001	77-04-26	7.1	.01	.05	.02	0	1	0	10	<450
12/26E-15C01	76-04-09	2.3	.00	.06	.03	10	2	70	< 2	<9
10/0CF 10F01	77-04-28	2.5	.00	.04	.03	0	2	100	0	<450
12/26E-18E01 12/26E-25001	76-04-08	1.2	.06	.32	.02	10	0	20	< 2	<7
12/202-23001	77 <i>-</i> 04-28	2.3	.00	.04	.02	0	2	0	0	<450
12/27E-03N01	76-04-07	5.2	.00	.04	.03	20	7	40	< 2	<9
12/27E-05Q01	77-04-26	.01	.00	.04	.03	10	9	0	0	< 450
12/27E-15G01	76-04-06	14	.00	.02	.02	10	2	50	< 2	<10
19/975 20001	77-04-26	16	.00	.04	.02	.0	3	100	Ō	< 450
12/27E-20P01	76-04-06	6.2	.00	.02	.03	10	4	50	< 2	<9
12/27E-24M01	76-04-06.	8.9	.00	.02	.02	10	7	70	< 2	<9
12/27E-27R01 12/27E-33J01	76-04-06	12	.00	.02	.02	10	13	90	< 2	<9
12/28E-18D01	76-04-05 76-04-07	6.6 4.4	.00	.01	.03	10	18	60	< 2	< <u>9</u>
12/28E-19F01	76-04-07	13	.00	.02 .02	.02	30	4	70	<1	< 7
12/202-15/01					.02	20	5	60	< 2	< 9
	77-04-26	13	.01	.04	.02	0	6	100	0	< 450
12/28E-28001	77-04-26	2.5	. 02	.05	.02	O	5	100	10	< 450
13/25E-11H01	77-04-27	1.1	.00	.04	.02	0	2	0	0	< 450
13/25E-30G01	77-04-27	.00	.00	.04	.01	0	Ō	0	0	<450
13/26E-31KO1	77-04-27	5.1	.00	.04	.01	0	1	0	0	<450
13/26E-34C01	76-04-08	2.8	.01	.09	.02	10	4	40	< 3	< 10
12/265 24003	77-04-27	3.7	.01	.08	. 01	0	3	100	10	< 450
13/26E-34D01 13/27E-31N01	76-04-08	61	.01	.04	.02	50	4	90	< 3	< 15
14/26E-28G01	77-04-28 77-04-27	3.3	.01	-04	.01	0	2	0	0	< 450
, -/ EUG-EOGU	// TU4-2/	4.9	.00	.04	.06	0	2	0	10	< 450

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

10/28E-11C03 77-04-25 20 0 0 0 0 0 0 0 1 < 6 < 10 10/28E-11C03 77-04-25 80 0 10 0 0 < 2 1 10 10 < 10 < 10 < 10 <	Local identifier	Date of sample	Dis- solved boron (B) (ug/L)	Dis- solved cad- mium (Cd) (ug/L)	Dis- solved chro- mium (Cr) (ug/L)	Hexa- valent chro- mium (Cr6) (ug/L)	Dis- solved cobalt (Co) (ug/L)	Dis- solved copper (Cu) (ug/L)	Dis- solved gallium (Ga) (ug/L)	Dis- solved ger- manium (Ge) (ug/L)	Dis- solved iron (Fe) (ug/L)
10/28E-14001 76-04-05 30 1	10/28E-11C03							-	_		30
11/27E-02001 76-04-05 20 0 6 6 6 6 0 3 46 110 11/28E-02001 77-04-25 150 0 0 0 0 0 0 0 0 10 10 10 110 11/28E-02001 77-04-25 10 0 0 0 0 0 0 0 0 0 10 11/28E-02001 77-04-25 10 0 0 0 0 0 0 0 0 0 0 0 11/28E-02001 77-04-25 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											30
11/27E-26C01 77-04-25 150 0 0 0 0 0 0 0 10 <10 11/28E-09R01 77-04-25 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											10
11/28E-29R01									_	-	10
11/28E-23D01 76-04-05 20 0 < 4 0 < 2 < 4 11/28E-29D01 77-04-25 40 0 0 0 1 0 0 10 < 10 12/25E-11801 77-04-25 40 0 0 0 0 1 0 0 0 7 < 10 12/25E-11801 77-04-27 20 0 0 0 0 0 0 0 7 < 10 12/25E-04N01 77-04-27 20 0 0 0 0 0 0 0 0 6 < 10 12/25E-07801 76-04-08 20 0 < 10 0 0 0 0 0 < 5 < 10 12/25E-07001 76-04-08 20 0 0 < 1 2 < 8 1	11/27E-26C01	77-04-25	150	U	U	U	U	U	10	<10	20
11/28E-29901 77-04-25											40 20
12/25E-11R01 77-04-28 30 0 0 0 0 0 0 0 7 <10 12/25E-04N01 77-04-27 20 0 0 0 0 0 0 0 0 6 <10 12/25E-04N01 77-04-27 20 0 0 0 0 0 0 0 0 6 <10 12/25E-04N01 77-04-27 20 0 0 0 0 0 0 0 0 0 6 <10 12/25E-04N01 76-04-08 20 0 <10 0 <10 0 <5 <10 12/25E-04N01 76-04-08 30 0 <10 <10 0 <5 <10 12/25E-12H01 76-04-08 30 0 <6 0 <6 0 <3 <6 12/25E-12H01 76-04-08 30 1 <7 0 <7 2 <3 <7 12/25E-13N01 76-04-08 30 1 <7 0 <7 2 <3 <7 12/25E-13N01 76-04-08 30 1 <7 0 <7 2 <3 <7 12/25E-13N01 76-04-08 30 1 <7 0 <7 2 <3 <7 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10										,	20
12/26E-04N01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										, -	30
12/26E-07801 76-04-08 20 0 <10 0 <10 0 <5 <10 12/26E-07001 76-04-08 20 0 <10 0 <10 0 <5 <10 12/26E-07001 76-04-08 30 0 <6 0 <6 0 <3 <6 0 <3 <6 0 <6 0 <3 <6 0 <6 0								-			30
12/26E-07001 76-04-08 20 0 <1 2 <8 1 <3 <8 1 <12/26E-12H01 76-04-08 30 0 <6 0 <6 0 <3 <6 <12/26E-12H01 76-04-08 30 0 <6 0 <6 0 <3 <7 12/26E-13H01 76-04-08 30 0 1 <7 0 <7 2 <3 <7 12/26E-13H01 76-04-06 40 0 <6 0 <6 0 <6 1 <3 <6 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	12/26E-U4NU1	//-04-2/	20	U	U			•	_	~10	30
12/26E-12H01 76-04-08 30 0 < 6 0 < 6 0 < 3 < 6 12/26E-13H01 76-04-08 30 1 < 7 0 < 7 2 < 3 < 7 12/26E-13H01 76-04-08 40 0 < 6 0 < 6 1 < 3 < 6 12/26E-13H01 76-04-06 40 0 < 6 0 < 6 1 < 3 < 6 12/26E-13H01 76-04-06 40 0 < 6 0 < 6 1 < 3 < 6 12/26E-13H01 76-04-06 40 0 < 6 0 < 6 1 < 3 < 6 12/26E-13H01 76-04-09 20 0 0 < 7 1	12/26E-07B01	76-04-08	20	0							10
12/26E-13A01 76-04-08 30 1 <7 0 <7 2 <3 <7 12/26E-13H01 76-04-06 40 0 <6 0 <6 1 <3 <6 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10											10
12/26E-13H01 76-04-06 40 0 <6 0 <6 1 <3 <6				-							30
77-04-26 30 0 0 0 0 0 0 0 0 0 0 0 0 0 10 12/26E-15CO1 76-04-09 20 0 0 0 0 0 0 0 0 7 50 0 12/26E-18EO1 76-04-08 20 0 0 0 0 0 0 0 7 50 0 12/26E-25QO1 77-04-28 10 0 0 0 0 0 0 0 0 9 50 0 12/26E-25QO1 77-04-28 10 0 0 0 0 0 0 0 9 50 0 12/27E-03NO1 76-04-07 30 0 0 6 4 6 0 0 0 0 9 50 0 12/27E-05QO1 77-04-26 30 0 0 0 0 0 0 0 2 56 50 12/27E-15QO1 77-04-26 30 0 0 0 0 0 0 2 56 50 12/27E-15QO1 76-04-06 30 0 0 77 3 57 0 53 57 10 50 12/27E-20PO1 76-04-06 40 0 0 77 3 57 0 53 57 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10									_		30
12/26E-15CO1 76-04-09 20 0 <7 1 <7 0 <3 <7 10	12/26E-13H01	76-04-06	40	0	< 6	. 0	<6	,	<3	<6	60
12/25E-18E01 76-04-08 20 0 <5 0 0 0 7 <10 12/25E-18E01 76-04-08 20 0 <5 0 0 0 0 0 0 7 <10 12/25E-18E01 76-04-08 20 0 <5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											120
12/26E-18E01 76-04-08 20 0 <5 0 <5 0 <2 <5 12/26E-25Q01 77-04-28 10 0 0 0 0 0 0 0 9 <10	12/26E-15C01										10
12/27E-25Q01 77-04-28 10 0 0 0 0 0 0 9 <10 12/27E-03N01 76-04-07 30 0 <6 4 <6 0 <3 <6 12/27E-05001 77-04-26 30 0 0 0 2 <6 12/27E-15G01 76-04-06 30 0 <7 3 <7 0 <3 <7 12/27E-15G01 76-04-06 30 0 <7 3 <7 0 <3 <7 12/27E-20P01 76-04-06 40 0 <7 4 <7 0 <3 <7 12/27E-24M01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-27R01 76-04-06 30 0 <7 5 <7 0 <3 <7 12/27E-27R01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-33001 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-33001 76-04-05 30 0 <7 4 <7 0 <3 <7 12/28E-18D01 76-04-07 20 0 <6 3 <6 10 <2 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 12/28E-28Q01 77-04-26 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											30
12/27E-03N01 76-04-07 30 0 < 6 4 < 6 0 <3 <6 12/27E-05Q01 77-04-26 30 0 0 0 0 0 2 < 6 <10 12/27E-15G01 76-04-06 30 0 < 7 3 < 7 0 <3 < 7 7 0 <3 < 7 7 0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <											140 10
12/27E-05Q01 77-04-26 30 0 0 0 0 2 <6 <10 12/27E-15G01 76-04-06 30 0 <7 3 <7 77-04-26 20 0 0 0 <2 1 10 12/27E-20P01 76-04-06 40 0 <7 4 <7 0 <3 <7 12/27E-24M01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-27R01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-27R01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-33J01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-33J01 76-04-05 30 0 <6 6 6 <6 0 33 <6 12/28E-18D01 76-04-07 20 0 <6 3 <6 10 <2 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 12/28E-30G01 77-04-26 10 1 0 0 0 0 0 1 10 15 0 0 9 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12/26E-25Q01	//-04-28	10	Ų	U	U	U .	U	9	~10	10
12/27E-15G01 76-04-06 30 0 <7 3 <7 0 <3 <7 10 12/27E-20P01 76-04-06 40 0 <7 4 <7 0 <3 <7 10 <10 <10 <10 <10 <10 <10 <10 <10 <10	12/27E-03NO1										10
77-04-26 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								2			170
12/27E-20P01 76-04-06 40 0 <7	12/27E-15G01										30
12/27E-24M01 76-04-06 30 0 <7 5 <7 0 <3 <7 12/27E-27R01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-27R01 76-04-05 30 0 <6 6 6 <6 0 33 <6 12/28E-18D01 76-04-07 20 0 <6 3 <6 10 <2 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 0 <3 <7 0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1											30
12/27E-27R01 76-04-06 30 0 <7 4 <7 0 <3 <7 12/27E-33J01 76-04-05 30 0 <6 6 6 <6 0 <3 <6 12/28E-18D01 76-04-07 20 0 <6 3 <6 12/28E-18D01 76-04-07 20 0 <6 3 <6 12/28E-19F01 76-04-07 20 0 <7 3 <7 77-04-26 20 0 0 4 0 0 20 <10 12/28E-28Q01 77-04-26 10 1 0 0 0 0 1 10 10 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12/27E-20P01	76-04-06	40	0	<1	4	</td <td>U</td> <td><3</td> <td><!--</td--><td>30</td></td>	U	<3	</td <td>30</td>	30
12/27E-33J01 76-04-05 30 0 <6 6 6 <6 0 <3 <6 12/28E-18001 76-04-07 20 0 <6 3 <6 10 <2 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 77-04-26 20 0 0 4 0 0 20 <10 12/28E-28001 77-04-26 10 1 0 0 0 1 10 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										•	10
12/28E-18001 76-04-07 20 0 <6 3 <6 10 <2 <7 12/28E-19F01 76-04-07 20 0 <7 3 <7 0 <3 <7 77-04-26 20 0 0 4 0 0 20 <10 12/28E-28Q01 77-04-26 10 1 0 0 0 1 10 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 10 13/26E-31K01 77-04-27 9 0 0 0 2 0 0 <6 <10 13/26E-34C01 76-04-08 20 0 <8 0 <8 0 <8 0 <3 <8											20
12/28E-19F01 76-04-07 20 0 <7 3 <7 0 <3 <7 77-04-26 20 0 0 4 0 0 20 <10 12/28E-28Q01 77-04-26 10 1 0 0 0 1 10 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 9 <10 13/26E-31K01 77-04-27 9 0 0 0 2 0 0 <6 <10 13/26E-34C01 76-04-08 20 0 <8 0 <8 0 <8 0 <3 <8							-				20 10
77-04-26 20 0 0 4 0 0 20 <10 12/28E-28Q01 77-04-26 10 1 0 0 0 1 10 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 9 <10 13/25E-31K01 77-04-27 9 0 0 0 0 0 0 0 <6 <10 13/26E-31K01 76-04-08 20 0 <8 0 <8 0 <3 <8											10
12/28E-28Q01 77-04-26 10 1 0 0 0 1 10 <10 13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12/286-19601	/6-04-0/	20	V	~/	3	<1	U	~3	~/	10
13/25E-11H01 77-04-27 10 0 10 15 0 0 9 <10 13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 0 0 0 10 13/26E-31K01 77-04-27 9 0 0 0 2 0 0 <6 <10 13/26E-34C01 76-04-08 20 0 <8 0 <8 0 <3 <8											20
13/25E-30G01 77-04-27 20 0 0 0 0 0 0 0 10 13/26E-31K01 77-04-27 9 0 0 2 0 0 <6											20
13/26E-31K01 77-04-27 9 0 0 2 0 0 <6 <10 13/26E-34C01 76-04-08 20 0 <8 0 <8 0 <3 <8											30
13/26E-34C01 76-04-08 20 0 <8 0 <8 0 <3 <8											120
	13/26E-31K01	77-04-27	9	0	0	2	0	0	<6	<10	10
	13/26E-34C01										20
77-04-27 20 0 0 0 0 0 10 <10					_						10
13/26E-34D01 76-04-08 30 1 14 0 <10 33 <5 <20											120
13/27E-31NO1 77-04-28 9 0 0 0 0 <6 <10											10
14/26E-28601 77-04-27 10 0 0 0 0 0 <6 <10	14/26E-28G01	//-04-27	10	Ü	U	U	U	U	<0	< 10	30

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Ferrous iron (Fe) (ug/L)	Dis- solved lead (Pb) (ug/L)	Dis- solved lithium (Li) (ug/L)	Dis- solved man- ganese (Mn) (ug/L)	Dis- solved molyb- denum (Mo) (ug/L)	Dis- solved nickel (Ni) (ug/L)	Dis- solved sele- nium (Se) (ug/L)	Dis- solved silver (Ag) (ug/L)	Dis- solved stron- tium (Sr) (ug/L)
10/28E-11C03	77-04-25	20	0	0	4	25	2	0	0	140
10/28E-11F03	77 -04 - 25	20	2	0	4	6	3 .	2	0	160
10/28E-14D01	76-04-05	0	7	0	<4	6	<6	0	<1	200
11/27E-02001	76-04-05	10	<6	ō	10	10	<6	1	<1	200
11/27E-26C01	77 - 04-25	20	. 0	0	20	5	2	1	0	210
11/28E-09R01	77-04-25	20	0	10	0	6	3	2	0	220
11/28E-23D01	76-04-05	0	3	0	<2	20	< 4	1	<1	130
11/28E-29P01	77-04-25	20	0	0	0	4	3	2	0	210
12/25E-11801	77-04-28	30	0	10	Ō	7	2	0	0	100
12/26E-04N01	77-04-27	30	0	10	0	7	3	1	0	210
12/26E-07B01	76-04-08	0	<10	10	< 7	5	<10	5	<2	380
12/26E-07001	76-04-08	10	<8	0	110	30	< 8	5	<Ī	220
12/26E-12H01	76-04-08	10	< 6	<20	100	30 .	<6	1	<1	210
12/26E-13A01	76-04-08	20	<7	0	50	30	< 7	1	<1	170
12/26E-13H01	76-04-06	40	<6	0	<4	20	<6	1	<1	170
	77-04-26	20	0	10	40	9	2	1	0	200
12/26E-15CO1	76-04-09	10	<7	10	<4	30	<7	12	<ĭ '	170
	77-04-28	20	0	10	0	12	2	2	Ó	240
12/26E-18E01	76-04-08	70	< 5	10	<3	10	<5	3	< 1.	110
12/26E-25Q01	77-04-28	10	0	10	. 0	3	2	5	0	240
12/27E-03N01	76-04-07	10	<6	0	<4	10	<6	6	<1	190
12/27E-05Q01	77-04-26	170	0	20	50	3	3	ŏ	ó	160
12/27E-15G01	76-04-06	. 10	<7	0	20	10	< 7	i	<1	260
10/070 00001	77-04-26	30	2	10	20	3	3	1	Ó	290
12/27E-20P01	76-04-06	10	<7	0	<4	30	<7	2	<1	210
12/27E-24M01	75-04-06	0	<7	0	<4	10	< 7	1	<1	230
12/27E-27R01.	76-04-06	10	< 7	10	<4	6	<7	i	<i< td=""><td>220</td></i<>	220
12/27E-33J01	76-04-05	10	<6	10	<4	20	< 6	2	<1	200
12/28E-18001	76-04-07	10	<6	10	<4	10	<5	2	<1	210
12/28E-19F01	76-04-07	10	<7	0	20	4	<7	2	<1	240
	77-04-26	20	2	10	8	1	2	1	0	280
12/28E-28Q01	77 - 04-26	20	0	0	20	ž	Ž	ż	ŏ	200
13/25E-11H01	77-04-27	20	0	10	4	2	2	ĩ	ŏ	220
13/25E-30601	77-04-27	60	o	20	60	0	2	Ó	Ö	90
13/26E-31K01	77 - 04-27	20	0	10	0	7	3	1	Ō	170
13/26E-34C01	76-04-08	10	<8	10	70	55	<8	11	<1	270
12/055 ****	77-04-27	10	0	10	70	18	4	i 5	Ó	320
13/26E-34D01	76-04-08	30	<10	10	<7	20	<10	6	<1	390
12/27 21 104			- 4	3.0	• • •		_			
13/27E-31N01 14/26E-28G01	77-04-28 77-04-27	20 20	2 2	10 0	40 0	7 0	2 3	0	0	210

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Dis- solved tin (Sn) (ug/L)	Dis- solved ti- tanium (Ti) (ug/L)	Dis- solved vana- dium (V) (ug/L)	Dis- solved zinc (Zn) (ug/L)	Dis- solved zir- conium (Zr) (ug/L)	Dis- solved gross alpha as U-Nat. (ug/L)	Dis- solved gross beta as Cs-137 (pc/L)
10/28E-11C03	77-04-25	<10	<2	2.2	20	<2	75	52
10/28E-11F03	77-04-25	<10	2	4.3	10	6	140	36
10/28E-14D01	76-04-05	< 8	<3	8.0	10	< 8	< 5.0	7.3
11/27E-02001	76-04-05	<8	<3	10	120	<8	7.0	42
	77-04-25	<10	<2	10	8	6	< 5.4	9.4
11/27E-26C01	//-04-25	~10	~2	10	•	U	~5,4	3.4
11/28E-09R01	77-04-25	<10	<2	10	10	<2	8.2	9.1
11/28E-23D01	76-04-05	< 5	< 2	30	0	< 5	6.7	6.9
11/28E-29P01	77-04-25	<10	<2	· 10	70	2	8.5	7.7
12/25E-11R01	77-04-28	<10	<2	35	8	< 2	80	21
12/26E-04N01	77-04-27	<10	< 2	35	6	< <u>2</u>	< 5.1	8.6
10/005 07001	36 04 00	-15	~5	16	20	-00	-15	370
12/26E-07B01	76-04-08	<15		16		< 20	<15	
12/26E-07Q01	76-04-08	<10	< 3	20	40	<10	< 9.6	83
12/26E-12H01	76-04-08	<8	< 3	4.0	20	<8	<7.5	9.3
12/26E-13A01	76 - 04-08	< 9	< 3	20	20	<9	14	91
12/26E-13H01	76-04-06	<9	<3	8.0	10	<9	17	66
	77-04-26	< 10	<2	8.6	. 10	<2	12	66
12/26E-15C01	76-04-09	< 9	<3	20	110	< 9	< 6.1	10
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77-04-28	<10	<2	35	210	< 2	11	9.5
12/26E-18E01	76-04-08	< 7	<2	5.0	20	<7	< 4.2	4.8
12/26E-25Q01	77-04-28	<10	<2	5.6	230	< 2	6.9	8.3
10/035 03003	75 04 07				•	-0	••	4.7
12/27E-03N01	76-04-07	<9	<3	12	.0	<9	11	43
12/27E-05Q01	77-04-26	<10	<2	.8	10	4.	<5.0	10
12/27E-15G01	76-04-06	<10	< 3	8.0	10	<10	8.6	210
	77-04-26	< 10	< 2	6.5	20	2	<6.8	240
12/27E-20P01	76-04-06	<9	< 3	20	0	<9	7.4	48
12/27E-24M01	76-04-06	<9	<3	13	0	<9	< 5.9	180
12/27E-27R01	76-04-06	< 9	<3	14	30	<9	8.8	130
12/27E-33J01	76-04-05	<9	<3	15	0	< 9	12	66
12/28E-18D01	76-04-07	< 5	< 3	10	30	<10	17	20
12/28E-19F01	76-04-07	< 9	<3	10	60	< 9	<9.3	170
	77-04-26	<10	<2	20	60	3	7.8	190
12/28E-28001	77-04-26 77-04-26	<10 <10	3	20 18	8	-3 -<2	<7.9	9.1
13/25E-11H01	77-04-26 77-04-27	<10 <10	<2	6.3	9	<2 <2	<5.3	130
13/25E-11HUT 13/25E-30G01	77-04-27 77-04-27	< 10	3		3	4	<4.7	
13/26E-30601	77-04-27	<10	<2	.0 35	3 8	< 2	<4.7	9.5 3.9
13/26E-34C01	76-04-08	<10	< 3	7.0	0	<1 <u>0</u>	<7.3	13
	77-04-27	< 10	< 2	7.8	10	2	<7.3	13
13/26E-34D01	76-04-08	< 10	< 5	10	70	<20	<16	2,900
13/27E-31NO1	77-04-28	<10	< 2	35	3	<2	< 4.3	6.5
14/26E-28G01	77-04-27	< 10	< 2	. 7.8	8	<2	<2.3	290

TABLE 26.--Water_quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

<u>.</u>						
		Dis-				
		solved				
		gross	Cestum	Dis-		Dis
		beta	137	sol ved		solved
	_	as Sr90	dis-	stron-	Total	cobalt
Local	Date	/Y90	sol ved	tium 90	tritium	60
identifier	of sample	(pc/L)	(pc/L)	(pc/L)	(pc/L)	(pc/L)
10/28E-11C03	77-04-25	46	<1.0	-0.4	- 100	
10/28E-11F03	77-04-25	30		< 0.4	< 480	< 10
10/28E-14001	76-04-05	5.8	<1.0	<.4	< 480	<10
11/27E-02001	76-04-05		<1.0	<,4	<480	< 5
11/27E-26C01	77-04-25	33 7.5	3.0	<.4	190,000	< 5
11/2/2-20001	77-04-23	7,5	<1.0	<.4	<480	<10
11/28E-09R01	77-04-25	7.5	<1.0	<.4	< 480	<10
11/28E-23D01	76-04-05	5.5	1.0	<.4	< 480	< 5
11/28E-29P01	77-04-25	6.4	<1.0	< .4	<480	<10
12/25E-11R01	77-04-28	18	<1.0	<.4	< 480	<10
12/26E-04N01	77-04-27	6.9	<1.0	<.4	4,000	<10
12/26E-07B01	76-04-08	300	2.0		54.000	
12/26E-07001	76-04-08	71	3.0	<.4	64,000	< 5
12/26E-12H01	76-04-08	7.4	24	< 4	8,900,000	< 5
12/26E-13A01	76-04-08	75	1.0	< .4	7,900	< 5
12/26E-13H01	76-04-06	75 54	2.0	<.4	1,000,000	6
12/206-13/301	70-04-00	94	2.0	<.4	720,000	6
	77-04-26	53	<1.0	< .4	470,000	20
12/26E-15CO1	76-04-09	8,2	< 1.0	<.7	> 480	< 5
	77-04-28	7.7	<1.0	<.4	<480	<10
12/26E-18E01	76 - 04-08	3.8	<1.0	<.4	95,000	<5
12/26E-25001	77-04-28	7.0	<1.0	< 4	< 480	10
12/27E-03NO1	76-04-07	35	1.0	- 4	160.000	- 5
12/27E-05001	77-04-26	8.2	<1.0	< 4 < 4	160,000	< 5
12/27E-15G01	76-04-06	170	3.0		< 480	< 20
,,,	77-04-26	200	2.0	<.4	1,400,000	7
12/27E-20P01	76-04-06	39		<.4	1,400,000	<10
(L) L/ L - E01 01	70-04-00	33	3.0	<.4	310,000	< 5
12/27E-24M01	76-04-06	140	5.0	<.4	1,100,000	6
12/27E-27R01	76-04-06	110	2.0	< .4	770,000	6
12/27E-33J01	76 - 04-05	53	1.0	< 4	350,000	< 5
12/28E-18D01	76-04-07	16	<1.0	< .4	90,000	<Š
12/28E-19F01	76-04-07	140	2.0	<.4	1,000,000	7
	77-04-26	150	1.0	<.4	990,000	70
12/28E-28001 ·	77-04-26	7.3	<1.0	<.4	<480	<10
13/25E-11H01	77-04-27	110.	<1.0	42		
13/25E-30G01	77-04-27	7.8	<1.0	< 4	2,300 <480	10 <10
13/26E-31K01	77-04-27	3.2	<1.0	< 4	< 480 < 480	<10
13/26E-34C01	75.04.00			-		
13/202-34601	76-04-08	9.9	<1.0	<.4	< 480	< 5
13/26E-34D01	77-04-27 76-04-08	11	1.0	<.4	< 480	20
13/27E-31NO1	75-04-08 77-04-28	2,300	210	<.4	310,000	90
14/26E-28G01		5.3	<1.0	<.4	410,000	10
/ 202-20001	77-04-27	230	1.0	12	53,000	130

TABLE 26.--Water_quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local	Station n	umber	Latitude	Longitude	Seq.	Date of sample		Depth of & well,	Depth to Dottom of sample interval (ft)	Depth to top of sample interval (ft)
				···········			_			
11/28E-05C01	462826119		46 28 26 46 26 19	119 19 59 119 21 37	01 01	78-04-19 78-04-19	0925 0810	245 294	281	 188
11/28E-18M01 12/26E-08P01	462619119 463200119		46 32 11	119 35 17	01	78-04-18	1450	322	322	280
12/26E-13H01	463146119		46 31 46	119 29 39	Ŏì	78-04-20	1015	126	119	109
12/26E-14001	463200119		46 32 00	119 31 50	01	78-04-20	1130	385	382	328
12/26E-15C01	463155119	325201	46 31 55	119 32 52	01	78-04-20	1235	440	440	315
12/26E-18G01	463150119		46 31 44	119 36 23	01	78-04-18	1355	280	280	207
12/27E-15G01	463138119		46 31 38	119 24 48	01	78-04-19	1210	171	169	111
12/27E-16M02 12/27E-19D02	463124119 463057119		46 31 24 46 30 57	119 26 56 119 29 14	01 01	78-04-19 78-04-19	1310 1415	212 253	212 253	135 150
			46 00 44	330 00 40	01	78-04-20	0910	160	160	110
12/27E-31Q01 12/28E-19F01	462844119 463049119		46 28 44 46 30 49	119 28 43 119 21 32	01	78-04-20 78-04-17	0910	80	80	67
13/25E-16J01	463644119		46 36 49	119 41 05	01	78-04-17	1130	160	147	95
13/25E-25B01	463531119		46 35 31	119 37 40	οi	78-04-18	1245	192	192	141
13/26E-14B01	463710119		46 37 04	119 31 30	01	78-04-18	0900	125	125	55
13/26E-26B03	463528119	931 2801	46 35 28	119 31 28	01	78-04-17	1320	60	59	35
13/26E-34C01	463432119	9325001	46 34 32	119 32 50	01	78-04-17	1440	149	135	125
13/27E-28Q01	463439119		46 34 39	119 26 08	01	78-04-19	1100	167	156	146
13/27E-34R01	463357119		46 33 57	119 24 30	01	78-04-17	1115	297	220	133
14/26E-14M03	464201119	9320801	46 42 00	119 31 55	01	78-04-18	1015	80	79	35
		of land surface		con-			Color		Uandaaan	Hard- ness,
		of land surface datum	or flow period prior	cific con- duct-		Tempera	(plat-		Hardness	ness, noncar-
L∝a1	Date	of land surface	or flow period	cific con-	Ph	Temper- ature			(mg/L	ness,
Local identifier	Date of sample	of land surface datum (ft.	or flow period prior to sam-	cific con- duct- ance	Ph (units	ature	(plat- inum-	: Turbidit	(mg/L	ness, noncar- bonate
	of sample 78-04-19	of land surface datum (ft. above NGYD) 442.00	or flow period prior to sam- pling (min)	cific con- duct- ance (micro- mhos)	(units 7.8	ature) (^{OC}) 17.4	(plat- inum- cobalt units)	: Turbidit (JTU)	(mg/L y as CaCO3	ness, noncar- bonate (mg/L) CaCO3)
identifier 11/28E-05C01 11/28E-18M01	of sample 78-04-19 78-04-19	of land surface datum (ft. above NGYD) 442.00 547.00	or flow period prior to sam- pling (min)	cific con- duct- ance (micro- mhos) 348 390	(units 7.8 8.0	ature) (°C) 17.4 18.2	(plat- inum- cobalt units)	Turbidit (JTU) 0 0	(mg/L y as CaC03 140 150	ness, noncar- bonate (mg/L) CaCO3) 5 23
identifier 11/28E-05C01 11/28E-18M01 12/26E-08P01	of sample 78-04-19 78-04-19 78-04-18	of land surface datum (ft. above NGVD) 442.00 547.00 726.00	or flow period prior to sam- pling (min)	cific con- duct- ance (micro- mhos) 348 390 400	7.8 8.0 7.8	ature (°C) 17.4 18.2 21.2	(plat- inum- cobalt units) l l 3	Turbidit (JTU) 0 0 25	(mg/L y as CaC03 140 150 160	ness, noncar- bonate (mg/L) CaCO3) 5 23 21
identifier 11/28E-05C01 11/28E-18M01	of sample 78-04-19 78-04-19	of land surface datum (ft. above NGYD) 442.00 547.00	or flow period prior to sam- pling (min)	cific con- duct- ance (micro- mhos) 348 390	(units 7.8 8.0	ature) (°C) 17.4 18.2	(plat- inum- cobalt units)	Turbidit (JTU) 0 0	(mg/L y as CaC03 140 150	ness, noncar- bonate (mg/L) CaCO3) 5 23
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 737.00	or flow period prior to sam- pling (min) 10 30 30 45	cific con- duct- ance (micro- mhos) 348 390 400 415 424	7.8 8.0 7.8 7.9 7.8	ature (°C) 17.4 18.2 21.2 19.7 21.1	(plat- inum- cobalt units) 1 1 3 4	Turbidit (JTU) 0 0 25 2 0	(mg/L y as CaC03 140 150 160 150 190	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01	78-04-19 78-04-19 78-04-19 78-04-18 78-04-20 78-04-20	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00	or flow period prior to sampling (min)	cific con- duct- ance (micro- mhos) 348 390 400 415 424	7.8 8.0 7.8 7.9 7.8	ature (°C) 17.4 18.2 21.2 19.7 21.1	(plat- inum- cobalt units) 1 1 3 4	Turbidit (JTU) 0 0 25 2 0	(mg/L y as CaC03 140 150 160 150 190	ness, noncar- bonate (mg/L) CaCO ₃) 5 23 21 34 23
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01	78-04-19 78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-18	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00	or flow period prior to sam- pling (min) 10 30 30 45	cific con- duct- ance (micro- mhos) 348 390 400 415 424	7.8 8.0 7.8 7.9 7.8	ature (°C) 17.4 18.2 21.2 19.7 21.1	(plat- inum- cobalt units) 1 1 3 4	Turbidit (JTU) 0 0 25 2 0	(mg/L y as CaC03 140 150 160 150 190	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01	78-04-19 78-04-19 78-04-19 78-04-18 78-04-20 78-04-20	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00	or flow period prior to sampling (min) 10 30 30 45	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454	7.8 8.0 7.8 7.9 7.8 7.8 7.7 7.9	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5	(plat- inum- cobalt units) 1 1 3 4 1 1	Turbidit (JTU) 0 0 25 2 0 4 3 2	(mg/L y as CaC03 140 150 160 150 190 180 140 190 160	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 27 81 46
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01	78-04-19 78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-18 78-04-19	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00	or flow period prior to sam- pling (min) 10 30 30 45	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526	7.8 8.0 7.8 7.9 7.8 7.8 7.7	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4	(plat- inum- cobalt units) 1 1 3 4 1	Turbidit (JTU) 0 0 25 2 0 4 3	(mg/L y as CaC03 140 150 150 190 180 140 190	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 3 27 81
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-31Q01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-20	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00	or flow period prior to sam- pling (min) 10 30 30 45 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2	(plat-inum-cobalt units) 1 1 3 4 1 2 1 1	Turbidit (JTU) 0 0 25 2 0 4 3 2 1	(mg/L y as CaC03 140 150 150 190 180 140 190 160 160	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 3 27 81 46 25
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-31Q01 12/28E-19F01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-19 78-04-19	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 515.00 466.00	or flow period prior to sam- pling (min) 10 30 30 45 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2	(plat- inum- cobalt units) 1 1 3 4 1 2 1 1 5	Turbidit (JTU) 0 0 25 2 0 4 3 2 1 1	(mg/L y as CaC03 140 150 160 150 190 180 140 190 160 160	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 27 81 46 25
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-31Q01 12/28E-19F01 13/25E-16J01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-17 78-04-18	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 515.00 466.00 510.00	or flow period prior to sam- pling (min) 10 30 30 45 30 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418 300 450 320	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9 7.8	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2 19.0 16.4 17.4	(plat- inum- cobalt units) 1 1 3 4 1 1 2 1 1 1	Turbidit (JTU) 0 0 25 2 0 4 3 2 1 1	(mg/L y as CaC03 140 150 160 150 190 180 140 190 160 160 190 190 140	ness, noncar- bonate (mg/L) CaCO ₃) S 23 21 · 34 23 27 81 46 25
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-31Q01 12/28E-19F01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-19 78-04-19	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 515.00 466.00	or flow period prior to sam- pling (min) 10 30 30 45 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2	(plat- inum- cobalt units) 1 1 3 4 1 2 1 1 5	Turbidit (JTU) 0 0 25 2 0 4 3 2 1 1	(mg/L y as CaC03 140 150 160 150 190 180 140 190 160 160	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 27 81 46 25
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-31Q01 12/28E-19F01 13/25E-16J01 13/25E-25B01 13/26E-14B01	78-04-19 78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-19 78-04-18 78-04-18 78-04-18 78-04-18 78-04-18	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 519.00 510.00 583.00 467.00	or flow period prior to sampling (min) 10 30 30 45 30 30 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418 300 450 320 350 272	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9 7.8 8.5	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2 19.0 16.4 17.4 17.7	(plat- inum- cobalt units) 1 1 3 4 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	Turbidit (JTU) 0 0 25 2 0 4 3 2 1 1 2 0 1 150	(mg/L y as CaC03 140 150 160 150 190 180 140 160 160 160 130 190 140	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 27 81 46 25 0 65 20 90
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-31Q01 12/27E-31Q01 12/28E-19F01 13/25E-16J01 13/25E-25B01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-17 78-04-18 78-04-18	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 516.00 516.00 583.00	or flow period prior to sam- pling (min) 10 30 30 45 30 30 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418 300 450 320 350	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9 7.8 7.9	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2 19.0 16.4 17.4	(plat-inum-cobalt units) 1	Turbidit (JTU) 0 0 0 25 2 0 0 4 3 2 1 1 1 2 0 1 150 1	(mg/L y as CaC03 140 150 160 150 190 140 190 160 160 130 190 140 140 140	ness, noncar- bonate (mg/L) CaCO ₃) 5 23 21 34 23 27 81 46 25
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-31Q01 12/28E-19F01 13/25E-25B01 13/25E-16J01 13/25E-14B01 13/26E-14B01 13/26E-26B03 13/26E-34C01 13/27E-28Q01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-19 78-04-19 78-04-19 78-04-17 78-04-18 78-04-18 78-04-17 78-04-17 78-04-17	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 515.00 466.00 510.00 583.00 467.00	or flow period prior to sampling (min) 10 30 30 45 30 30 30 30 30 30 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418 300 450 320 350 272	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.9 7.8 7.9	ature (°C) 17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2 19.0 16.4 17.4 17.7 17.7	(plat-inum-cobalt units) 1	Turbidit (JTU) 0 0 25 2 0 4 3 2 1 1 1 1 2 0 1 150 1	(mg/L y as CaC03 140 150 160 150 190 140 190 160 160 160 110 190 140 1100	ness, noncar- bonate (mg/L) CaCO3) 5 23 21 34 23 3 27 81 46 25 0 65 20 90 0
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-15C01 12/27E-15G01 12/27E-16M02 12/27E-31Q01 12/27E-31Q01 12/28E-19F01 13/25E-25B01 13/26E-14B01 13/26E-26B03 13/26E-26B03 13/26E-34C01	78-04-19 78-04-19 78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-19 78-04-19 78-04-17 78-04-18 78-04-18 78-04-18 78-04-18 78-04-18	of land surface datum (ft. above NGVD) 442.00 547.00 726.00 516.00 737.00 717.00 667.00 518.00 529.00 559.00 515.00 466.00 583.00 467.00	or flow period prior to sampling (min) 10 30 30 45 30 30 30 30 30 30 30 30 30 30 30 30 30	cific con- duct- ance (micro- mhos) 348 390 400 415 424 430 340 526 454 418 300 450 320 350 272 230 612	7.8 8.0 7.8 7.9 7.8 7.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	17.4 18.2 21.2 19.7 21.1 21.2 20.8 18.4 20.5 19.2 19.0 16.4 17.4 17.7 17.7	(plat- inum- cobalt units) 1 1 3 4 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1	Turbidit (JTU) 0 0 25 2 0 4 3 2 1 1 1 150 1	(mg/L y as CaC03 140 150 160 150 190 180 140 160 160 160 140 140 140 100	ness, noncar- bonate (mg/L) CaCO ₃) 5 23 21 34 23 27 81 46 25 0 65 20 90 0

TABLE 26.--Nater-quality data from selected wells, April 1976-April 1977--Continued Benton County--Continued

Local identifier	Date of sample	Calcium dissolved (mg/L as Ca)	Magnesium, dissolved (mg/L as Mg)	Sodium, dissolved (mg/L as Na)	Sodium percent	Sodium adsorption ratio	Potass: dissolu (mg/l as K	red b . (m	icar- onate g/L as HCO3}	Car- bonate (mg/L as Co3)	Alka- linity (mg/L as CaCO ₃)
11/28E-05C01	78-04-19	33	13	22	25 23	.8	6.5		160	O	130
11/28E-18M01	78-04-19	42	12	22		.8	6.9		160	0	1 30
12/26E-08P01	78-04-18	43	13	20	21	.7	5.9		170	0	140
12/26E-13H01	78-04-20	38	13	29	29	1.0	6.4		140	0	110
12/26E-14D01	78-04-20	50	15	21	19	.7	5.9		200	Ō	160
12/26E-15C01	78-04-20	47	14	24	22	.8	6.0		210	0	170
12/26E-18G01	78 - 04- 18	37	12	18	21	.7	4.5		140	ŏ	110
12/27E-15G01	78-04-19	52	14	30	25	1.0	6.9		130	ŏ	110
12/27E-16M02	78-04-19	43	13	30	28	1.0	7.2		140	ŏ	110
12/27E-19D02	78 - 04-19	46	12	23	22	. 8	6.7		170	Ö	140
12/27E-31001	78-04-20	34	11	17	21	_				_	
12/28E-19F01	78-04-17	54	13	20	18	.6	6.0		170	0	140
13/25E-16J01	78-04-18	36	13	11	14	.6	6.7		150	0	120
13/25E-25801	78-04-18	41	8.1	14	18	.4 .5	4.7		150	0	120
13/26E-14B01	78-04-18	26	9.2	19	27	.8	5.9 5.4		56 140	0	46 110
13/26E-26B03	78-04-17	29	8.8	6.0	10		-			_	
13/26E-34C01	78-04-17	62	8.8 7.7		10	.3	4.7		130	Ō	110
13/27E-28001	78-04-19	31	11.	44 22	32 27	1.4	12		59	5	57
13/27E-34RD1	78-04-17	40	16	22 21		.9	4.2		160	0	130
14/26E-14M03	78-04-18	46	6.9	5.2	21 7	.7 .2	4.9 5.0		150 85	0	120 70
			. <u> </u>				·	, ,,-	5011	107 20	ids
Local identifier	Date of sample	Carbon dioxide dis- solved (mg/L	Sulfate dis- solved (mg/L	Chlor- ide, dis- solved (mg/L	Fluo- ride, dis- solved (mg/L	dis- solved	Iodide, dis- solved	Silica, dis- solved	res at	1due re 180 .at C de	sidue 105 g. C. s-
		as (CO ₂)		as CL)	as F)		(mg/L as 1)	(mg/L as SiO ₂)	sol (mg	ved so	lved g/L)
	78-04-19	as (CO ₂)	as 504)	as CL)	as F)	as Br)	as 1)	as \$10 ₂ }	(mg	ved so /L) (m	<u>g/L)</u>
	78-04-19 78-04-19	as CO ₂)	as 504) 34	as CL) 7.7	as F) 0.4	as Br) 0.1	0.00	as \$10 ₂)	(mg 2	ved so /L) (m 25	<u>g/L)</u> 280
11/28E-18M01 12/26E-08P01		as CO ₂) 4.1 2.6	as 504)	<u>as CL)</u> 7.7 11	0.4 .4 .4	as Br) 0.1 .1	0.00 .01	as S10 ₂) 36 37	(mg 2 2	ved so /L) (m 25 51	g/L) 280 370
11/28E-18M01 12/26E-08P01 12/26E-13H01	78-04-19 78-04-18 78-04-20	as CO ₂) 4.1 2.6 4.3 2.8	as SO ₄) 34 45	as CL) 7.7	0.4 .4 .4	as Br) 0.1 .1 .1	0.00 .01 .01	36 37 38	(mg 2 	ved so /L) (m 25 51 56	g/L) 280 370 360
11/28E-18M01 12/26E-08P01 12/26E-13H01	78-04-19 78-04-18	as CO ₂) 4.1 2.6 4.3 2.8	as SO ₄) 34 45 27	as CL) 7.7 11 11	as F) 0.4 .4	as Br) 0.1 .1	0.00 .01	as S10 ₂) 36 37	(mg 2 2 2 2 2	ved so /L) (m 25 51 56 73	g/L) 280 370
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01	78-04-19 78-04-18 78-04-20	as CO ₂) 4.1 2.6 4.3 2.8 5.1	as SO ₄) 34 45 27 52	7.7 11 11 14 8.2	0.4 .4 .4 .7 .5	as Br) 0.1 .1 .1 .1 .1	0.00 .01 .01 .00 .00	35 37 38 39 40	(mg	ved so /L) (m 25 51 56 73 78	<u>g/L)</u> 280 370 360 370 380
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01	78-04-19 78-04-18 78-04-20 78-04-20 78-04-20 78-04-18	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5	34 45 27 52 47	as CL) 7.7 11 11 14	as F) 0.4 .4 .7 .5	as Br) 0.1 .1 .1 .1 .1	0.00 .01 .01 .00 .00	36 37 38 39 40	(mg	ved so /L) (m 25 51 56 73 78	<u>g/L)</u> 280 370 360 370 380
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01	78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-18	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6	as SO ₄) 34 45 27 52 47 33 25 61	7.7 11 11 14 8.2 7.8 13	as F) 0.4 .4 .7 .5 .5	as Br) 0.1 .1 .1 .1 .1 .1	0.00 .01 .01 .00 .00 .00	as \$(0 ₂) 36 37 38 39 40 42 43	(mg	ved so /L) (m 25 51 56 73 78 61	g/L) 280 370 360 370 380 380
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02	78-04-19 78-04-18 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.6	as SO ₄) 34 45 27 52 47 33 25 61 54	7.7 11 11 14 8.2 7.8	as F) 0.4 .4 .7 .5 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1	0.00 .01 .01 .00 .00 .00	36 37 38 39 40 42 43 30	(mg	ved so /L) (m 25 51 56 73 78 61 23	g/L) 280 370 360 370 380 380 330
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02	78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-18	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6	as SO ₄) 34 45 27 52 47 33 25 61	7.7 11 11 14 8.2 7.8 13	as F) 0.4 .4 .7 .5	as Br) 0.1 .1 .1 .1 .1 .1	0.00 .01 .01 .00 .00 .00	as \$(0 ₂) 36 37 38 39 40 42 43	(mg	ved so /L) (m 25 51 56 73 78 61 223 225	g/L) 280 370 360 370 380 380
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19002	78-04-19 78-04-18 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4	as SO ₄) 34 45 27 52 47 33 25 61 54 55	7.7 11 11 14 8.2 7.8 13 14 10 7.5	0.4 .4 .7 .5 .5 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	0.00 .01 .03 .00 .00 .00 .00	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35	(mg	ved so /L) (m 25 51 56 73 78 61 23 25 67	g/L) 280 370 360 370 380 380 330 430 400
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19002	78-04-19 78-04-18 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-19 78-04-17	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4	as SO ₄) 34 45 27 52 47 33 25 61 54	7.7 11 11 14 8.2 7.8 13 14	0.4 .4 .7 .5 .5 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	0.00 .01 .01 .00 .00 .00 .00	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35	(mg	ved so /L) (m 25 51 56 73 78 61 23 25 99	9/L) 280 370 360 370 380 380 330 430 400 360
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-18G01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-19F01 12/28E-19F01 13/25E-16J01	78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-19 78-04-19 78-04-19 78-04-17 78-04-20	4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4	as SO ₄) 34 45 27 52 47 33 25 61 54 55	7.7 11 11 14 8.2 7.8 13 14 10 7.5	0.4 .4 .7 .5 .5 .5 .7 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .00 .00 .00 .00 .00 .01 .01	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35	(mg	ved so /L) (m 25 51 56 73 78 61 23 25 99 67	9/L) 280 2370 360 370 380 380 330 400 360
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19002 12/27E-31Q01 12/27E-31Q01 12/27E-16J01 13/25E-16J01 13/25E-25B01	78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-19 78-04-19 78-04-17 78-04-17 78-04-17	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4 4.3 3.0 3.8	as SO ₄) 34 45 27 52 47 33 25 61 54 55 20 49 28 85	7.7 11 11 14 8.2 7.8 13 14 10 7.5	0.4 .4 .7 .5 .5 .5 .7 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .01 .00 .00 .00 .00 .01 .01	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ved so /L) (m 25 51 56 73 78 61 23 29 99 67 002	9/L) 280 370 360 370 380 380 330 340 400 360
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19002 12/27E-31Q01 12/28E-19F01 3/25E-16J01 3/25E-25B01	78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-19 78-04-19 78-04-19 78-04-17 78-04-20	4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4	as SO ₄) 34 45 27 52 47 33 25 61 54 55 20 49 28	7.7 11 11 14 8.2 7.8 13 14 10 7.5 4.2	0.4 .4 .7 .5 .5 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .00 .00 .00 .00 .00 .01 .01	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35	2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2	ved so /L) (m 25 51 56 73 78 61 23 25 67 002 002 005	9/L) 280 2370 360 370 380 380 330 400 360
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01 12/26E-14D01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02 12/27E-19P01 12/28E-19F01 13/25E-16J01 3/25E-25801 3/26E-26803	78-04-19 78-04-18 78-04-20 78-04-20 78-04-18 78-04-19 78-04-19 78-04-17 78-04-17 78-04-17	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4 4.3 3.0 3.8 2.2	33 34 45 27 52 47 33 25 61 54 55 20 49 28 85 15	7.7 11 11 14 8.2 7.8 13 14 10 7.5 4.2 11 9.1 21 6.3	0.4 .4 .7 .5 .5 .5 .7 .5 .3 .4	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .00 .00 .00 .00 .00 .01 .01 .01	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35 47 34 42 8.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ved so /L) (m 25 51 55 67 73 78 61 22 25 99 67 02 02 05 06 71	9/L) 280 370 360 370 380 380 380 430 430 400 360
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19F01 12/27E-19F01 13/25E-16H01 13/25E-16H01 13/25E-16H01 13/25E-25801 13/26E-14B01 13/26E-26B03 13/26E-34C01	78-04-19 78-04-18 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-17 78-04-18 78-04-18	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4 4.3 3.0 3.8	as SO ₄) 34 45 27 52 47 33 25 61 54 55 20 49 28 85	7.7 11 11 14 8.2 7.8 13 14 10 7.5 4.2 11 9.1 21 6.3	0.4 .4 .7 .5 .5 .5 .4 .7 .5	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .01 .00 .00 .00 .00 .01 .01 .01	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35 47 34 42 8.8 37	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ved so /L) (m 25 51 55 73 78 61 23 29 67 002 002 005 006 771	9/L) 280 370 360 370 380 380 380 380 380 220 220 260 260
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-31Q01 12/27E-31Q01 12/27E-31Q01 12/28E-19F01 3/25E-16J01 3/25E-16J01 3/25E-16J01 3/25E-16J01 3/25E-34C01 3/26E-34C01 3/27E-28Q01	78-04-19 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-18 78-04-18 78-04-18 78-04-18	4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4 4.3 3.0 3.8 .3 2.2	as SO ₄) 34 45 27 52 47 33 25 61 54 55 20 49 28 85 15	7.7 11 11 14 8.2 7.8 13 14 10 7.5 4.2 11 9.1 21 6.3	as F) 0.4 .4 .7 .5 .5 .4 .7 .5 .4 .7 .5 .4 .7 .5 .6	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .03 .00 .00 .00 .00 .01 .01 .01 .01 .00	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35 47 34 42 8.8 37	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ved so /L) (m 25 51 56 73 78 61 23 25 67 002 002 005 006 771 339 81	9/L) 280 370 360 370 380 380 330 430 400 360 220 390 360
11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19F01 3/25E-19F01 3/25E-19F01 3/25E-25801 3/26E-14B01 3/26E-26B03 3/26E-34C01	78-04-19 78-04-20 78-04-20 78-04-20 78-04-19 78-04-19 78-04-19 78-04-17 78-04-18 78-04-18 78-04-17	as CO ₂) 4.1 2.6 4.3 2.8 5.1 5.3 4.5 2.6 2.8 3.4 4.3 3.0 3.8 2.2 2.6 .0	as SO ₄) 34 45 27 52 47 33 25 61 54 55 20 49 28 85 15	7.7 11 11 14 8.2 7.8 13 14 10 7.5 4.2 11 9.1 21 6.3	0.4 .4 .7 .5 .5 .5 .7 .5 .3 .4	as Br) 0.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.00 .01 .01 .00 .00 .00 .00 .01 .01 .01	as \$10 ₂) 36 37 38 39 40 42 43 30 42 35 47 34 42 8.8 37	2 2 2 2 2 2 2 2 3 3 2 2 2 2 1 1 1 1 3 3 2 2 2 2	ved so /L) (m 25 51 56 73 78 61 23 25 67 02 02 05 06 71 39 81	9/L) 280 370 360 370 380 380 380 380 380 220 220 260 260

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Local identifier	Date of sample	Solids, sum of consti- tuents, dis- solved (mg/L)	Solids, dis- solved (tons per ac-ft)	Nitro- gen, nitrate total (mg/L as N)	Nitro- gen, nitrite total (mg/L as N)	Nitro- gen, ammonia total (mg/L as N)	Phos- phorus, total (mg/L as P)	Arsenic dis- solved (ug/L as As)	Chro- mium, hexa- valent, dissolved (ug/L as Cr)	Copper, dis- solved (ug/L as Cu)
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20	232 255 242 261 286	0.31 .34 .35 .37	2.0 3.0 5.6 6.0 2.4	0.02 .00 .02 .01	0.02 .02 .17 .03 .04	0.02 .03 .09 .03	14 8 4 6	0 7 21 3 5	0 0 0 0
12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02	78-04-20 78-04-18 78-04-19 78-04-19 78-04-19	278 222 273 269 270	.36 .30 .44 .41 .36	2.4 4.2 16 11 3.0	.01 .00 .00 .01	.08 .02 .04 .02 .02	.04 .08 .02 .03 .03	6 5 5 9 7	6 55 5 5 -3	0 0 0 0
12/27E-31QD1 12/28E-19F01 13/25E-16J01 13/25E-25B01 13/26E-14B01	78-04-20 78-04-17 78-04-18 78-04-18 78-04-18	224 262 218 212 188	.27 .41 .28 .28 .23	.00 13 1.3 .37 .32	.01 .00 .01 .01 .00	.04 .01 .01 .44 .02	.04 .02 .02 .38 .04	4 9 4 2 14	0 9 0 . 2 0	0 0 0 0
13/26E-26B03 13/26E-34C01 13/27E-28Q01 13/27E-34R01 14/26E-14M03	78-04-17 78-04-17 78-04-19 78-04-17 78-04-18	151 395 221 255 206	.19 .52 .28 .33 .29	.16 3.7 .72 2.8 3.3	.00 .03 .00 .00	.02 .20 .04 .01 .08	.05 .06 .02 .02 .04	6 11 7 5 4	0 0 5 0 290	0 0 0
Local identifier	Date of sample	Iron, ferrous dis- solved (ug/L as Fe)	Sele- nium, dis- solved (ug/L as Se)	Gross alpha, dis- solved (ug/L as U-Nat)	Gross beta, dis- solved (PCI/L as CS-137)	Gross beta, dis- solved (PCI/L as SR/ YT-90d)	Cesium 137 dis- solved (pCi/L)/	Stron- tium 90 dis- solved (pCi/L)	Tritium total (pCi/L)	Cyanide total (mg/L as Cn)
11/28E-05C01 11/28E-18M01 12/26E-08P01 12/26E-13H01 12/26E-14D01	78-04-19 78-04-19 78-04-18 78-04-20 78-04-20	10 10 0 10	1 2 5 2 3	11 <4.1 8.2 14 8.5	8.1 16 11 41 6.0	7.1 13 9.1 35 5.1	<2.0 <2.0 <2.0 <2.0 <2.0	<0.4 <.4 <.4 <.4	170,000 73,000 800,000 310,000 <480	0.00 .00 .00 .01
12/26E-15C01 12/26E-18G01 12/27E-15G01 12/27E-16M02 12/27E-19D02	78-04-20 78-04-18 78-04-19 78-04-19 78-04-19	10 0 0 0 10	2 3 1 1 3	7.8 <3.9 <5.1 5.8 7.3	6.9 6.9 160 62 12	5.8 5.9 130 52 9.8	<2.0 <2.0 2.0 <2.0 <2.0	<.4 <.4 <.4 <.4	< 480 200,000 1,400,000 1,100,000 13,000	.00 .00 .02 .01
12/27E-31QD1 12/28E-19F01 13/25E-16J01 13/25E-25801 13/26E-14801	78-04-20 78-04-17 78-04-18 78-04-18 78-04-18	20 0 10 0	0 2 1 0	<1.4 <4.1 <3.1 <2.1 <3.1	4.4 110 4.4 5.6 5.6	3.8 96 3.7 5.0 4.7	<2.0 <2.0 <2.0 <2.0 <2.0	<.4 <.4 <.4 <.4 <.4	< 480 1,000,000 < 480 < 480 2 500	.00 .00 .00 .00
13/26E-26B03 13/26E-34C01 13/27E-28Q01 13/27E-34R01 14/26E-14M03	78-04-17 78-04-17 78-04-19 78-04-17 78-04-18	10 10 30 0	0 12 1 2 1	<1.7 <4.2 4.9 7.3 <3.1	5.2 13 4.6 7.5 270	4.5 4.5 3.9 6.4 13	<2.0 <2.0 <2.0 <2.0 <2.0	<.4 <.4 <.4 <.4 2.9	<480 <480 <480 23,000 7,200	.00 .00 .00 .00

TABLE 26.--Water_quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Analyses by inductively coupled plasma spectroscopy

Local identifier	Date of sample	Cobalt 60 dissolved (pCi/L)	Silver dissolved (mg/L as Ag)	Aluminum dissolved (mg/L as Al)	Boron dissolved (mg/L as B)	Barium dissolved (mg/L as Be)	Beryllium dissolved (mg/L as Be)	Bismuth dissolved (mg/L as -Cd)	Cadmium dissolved (mg/L as Cd)	Cobalt dissolved (mg/L as Cd)
11/28E-05C01	78-04-19	<1	< 0.010	0.070	0.030	0.050	<0.001	<1.0	0.003	<0.005
11/28E-18M01	78-04-19	6	<.010	.070	.030	.050	<.001	<1.0	.003	<.005
12/26E-08P01	78-04-18		<.010	.070	.010	.030	<.001	<1.0	.003	<.005
12/26E-13H01	78-04-20	20	<.010	.070	.030	.030	<.001	<1.0	.003	<.005
12/26E-14D01	78-04-20	<1	<.010	.100	.030	.050	<.001	<1.0	.003	<.005
12/26E-15C01	78-04-20	<1	<.010	.070	.030	.070	<.001	<1.0	.003	<.005
12/26E-18G01	78-04-18	<1	<.010	.050	.010	.030	<.001	<1.0	.003	<.005
12/27E-15G01	78-04-19		<.010	.100	.030	.050	<.001	<1.0	.003	<.005
12/27E-16M02	78-04-19	30	<.010	.070	.030	.050	<.001	<1.0	.003	<.005
12/27E-19D02	78-04-19		<.010	.070	.030	.050	<.001	<1.0	.003	<.005
12/27E-31Q01	78-04-20		<.010	.070	.030	.070	<.001	<1.0	.003	<.005
12/28E-19F01	78-04-17	60	<.010	.070	,030	.050	<.001	<1.0	.001	<.005
13/25E-16J01	78-04-18	<1	<.010	.070	.010	.010	<.001	<1.0	.003	<.005
13/25E-25B01	78-04-18	<1	<.010	.050	.010	.050	<.001	< 1.0	.001	<.005
13/26E-14B01	78-04-18	<1	<.010	.070	.030	.010	<.001	< 1.0	.003	<.005
13/26E-26B03	78-04-17	1	<.010	<.050	.010	.007	<.001	<1.0	.001	<.005
13/26E-34C01	78-04-17	≺ 1	<.010	.100	.030	.030	<.001	<1.0	100.	<.005
13/27E-28Q01	78-04-19	<1	<.010	.070	.010	.050	<.001	<1.0	.003	<.005
13/27E-34R01	78-04-17	i	<.010	.070	.010	.050	<.001	<1.0	.003	
14/26E-14M03	78-04-18	<1	<.010	.050	.007	.070	<.001	<1.0	.003	<.005 <.005

			iron.						
		Chromium	ferric	Gallium	Germanium	Lithium	Manganese	Molybdenum	Nickel
	Date	dissolved	dissolved	dissolved	dissolved	dissolved		dissolved	dissolved
Local	of	(mg/L as	(mg/L as						
identifier	. sample	Čr)	Fe3+	Ga)	(Ğe)	L1)	Mn)	Mo)	NI)
11.4501 05001									<u>,</u>
11/28E-05C01	78-04-19	<0.050	<0.005	<0.030	0.050	0.010	0.001	0.010	<0.050
11/28E-18M01	78-04-19	<.050	<.005	<.030	.070	.010	.001	.010	<.050
12/26E-08P01	78-04-18	<.050	<.005	<.030	.070	.007	.030	010	<.050
12/26E-13H01	78 - 04-20	<.050	.030	<.030	.070	.010	.010	.010	<.050
12/26E-14D01	78-04-20	<.050	.010	<.030	.070	.010	.003	.010	<.050
12/26E-15CO1	78-04-20	<.050	.007	<.030	.070	.010	.003	.030	<.050
12/26E-18G01	78-04-18	<.050	.007	<.030	.050	.005	.003	.030	<.050
12/27E-15G01	78-04-19	<.050	.010	<.030	.070	.007	.005	.010	<.050
12/27E-16M02	78-04-19	<.050	.010	<.030	.070	.007	.003	.030	<.050
12/27E-19002	78-04-19	<.050	.010	< 030	.070	.007	.001	.030	<.050 <.050
12/27E-31Q01	78-04-20	<.050	.050	<.030	.070	.010	.070	.010	
12/28E-19F01	78-04-17	<.050	.010	<.030	.050	.010	.001	.010	<.050
13/25E-16J01	78-04-18	<.050	.010	<.030	.070	.007	.001		<.050
13/25E-25801	78-04-18	<.050	.005	<.030	.030	<.005		.010	<.050
13/26E-14B01	78-04-18	<.050	.030	<.030	.050	.003	.100	.010	<.050
13/26E-26B03	78-04-17	<.050	<.005	<.030	.050		.001	.010	<.050
13/26E-34C01	78-04-17	<.050	.007	<.030		<.005	.001	<.010	<.050
13/27E-28001	78-04-19	<.050	<.005	<.030	.050	.007	. 005	.030	<.050
13/27E-34R01	78-04-17	<.050	.010	<.030	.070	.010	.010	.030	<. 050
14/26E014M03	78-04-18	.100			.070	.010	.003	.010	<.050
14/ 5050141103	70-04-10	. 100	< .005	<.030	.030	<.005	. 030	.010	<.050

TABLE 26.--Water-quality data from selected wells, April 1976-April 1977--Continued

Benton County--Continued

Analyses by inductively coupled plasma spectroscopy

Local identifier	Date of sample	Lead dissolved (mg/L as Pb)	Antimony dissolved (mg/L as Sb)	Tin dissolved (mg/L as Sn)	Strontium dissolved (mg/L as Sr)	Titanium dissolved (mg/L as Ti)	Vanadium dissolved (mg/L as V)	Zinc dissolved (mg/L as Zn)	Zircontium dissolved (mg/L as Zr)
11/28E-05C01	78-04-19	<0.030	<0.030	0.050	0.300	<0.005	0.010	< 0.005	<0.005
11/28E-18M01	78-04-19	<.030	<.030	.070	.300	<.005	.010	<.005	<.005
12/26E-08P01	78-04-18	<.030	<.030	.050	.100	<.005	.030	<.005	<.005
12/26E-13H01	78-04-20	<.030	<.030	.070	.100	<.005	.030	<.005	<.005
12/26E-14D01	78-04-20	<.030	<.030	.100	.300	<.005	.030	<.005	<.005
12/26E-15C01	78-04-20	<.030	<.030	.100	. 300	<.005	.030	.100	<.005
12/26E-18G01	78-04-18	<.030	<.030	.070	.100	<.005	.030	<.005	<.005
12/27E-15G01	78-04-19	<.030	<.030	.070	.300	<.005	.010	<.005	<.005
12/27E-16M02	78-04-19	<.030	< .030	.070	.300	<.005	.030	<.005	<.005
12/27E-19D02	78-04-19	<.030	<.030	.050	.300	<.005	.010	<.005	<.005
12/27E-31001	78-04-20	<.030	<.030	.070	.100	<.005	<.010	<.005	<.005
12/28E-19F01	78-04-17	<.030	<,030	.070	.300	<.005	.010	.030	<.005
13/25E-16J01	78-04-18	<.030	<.030	.070	.100	<.005	.030	<.005	<.005
13/25E-25B01	78-04-18	<.030	<.030	<.050	.100	<.005	<.010	<.005	<.005
13/26E-14B01	78-04-18	<.030	<.030	<.050	.100	<.005	.030	<.005	<.005
13/26E-26B03	78-04-17	<.030	<.030	<.050	.100	<.005	.010	<.005	<.005
13/26E-34C01	78-04-17	<.030	<.030	<.050	.300	<.005	.010	<.005	<.005
13/27E-28001	78-04-19	<.030	<.030	.070	.300	<.005	.030	.300	<.005
13/27E-34R01	78-04-17	<.030	<.030	.070	.300	<.005	.010	<.005	<.005
14/26E-14M03	78-04-18	<.030	< .030	.100	.300	<.005	<.010	<.005	<.005

All results are reported in mg/L. Results are rounded to the nearest reporting level. Reporting levels range from the detection limit in steps of 1, 3, 5, 7, and 10. Levels which are less than the detection limit are reported as < that value. Levels which are greater than the upper concentration limit are reported as > that value. For example, for an analysis of lead the result would be reported as one of the following concentrations in mg/L: <0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, >10. Results are reported one significant figure only. Due to the rounding technique even one significant figure is an estimate. The precision is approximately plus or minus one step at the 68-percent confidence level (1 std. dev.) and two steps at 95-percent confidence level (2 std. dev.).

TABLE 27.--Summary of selected data from recorded wells, by subarea

[Use symbols: H, household supply (may include lawn and small garden irrigation); I, irrigation; N, industrial/commercial; P, public supply (includes some use for fire protection); S, stock water. In some cases, wells are used for two or more purposes]

			pth r	ange	(ft)	Pumping	yield	rang	je (gal	/min)						
	Number	1	100		1000	1	100		1000				Use			
T/R	of wells	to 99	to 499	to 999	or more	to 99	to 499	999	or more		Н	I	N	P	s	Flowing wells
Naches	subarea												-	•	_	
12/12	1	-	1	-	-	1	-	-	-		1	1	_	-	_	-
13/12	ļ		-	-	-	-	-	-	-		-	-	-	1	1	-
13/13 13/18	3 17	1 6	1 8	-	-	-8	-5	٦,	-		,]	٠,	-	٠.	-	-
14/14	'ś	3	2	-	-	î	-	_'	-		13 1	2	-	ļ	-	-
14/15	ĭ	ĭ		-	-	_'	-	-	-		i	-	-	_1	-	-
14/16	i	i		-	•	1	_	-	-		i	_	-	•	_	-
14/17	15	5	5	1	1	ġ	2	1	-		ż	2	3	2	_	-
14/18	23	9	20	-	-	17	1	1	-		25		ī		-	_
15/15	1	1	-	-	-	1	-	-	-		-	1	-	_	-	-
16/12	1	-		-	•		-	-	-		-	-	-	-	-	-
16/14 16/15	4 6	2	1 2	-	-]		-	-				-	3	-	-
17/11	ì	4	2	-	-	. 4	1	-	-		6	1	-		-	-
17/13	6	- 1	٦,	-	-	- 1	-	-	-		-,	-	-	j	-	-
17/14	Ğ	j	_'	_	-	2	:	-	-		2	-1	-	3	-	-
TOTALS	92	37	41	1	1	46	9	3	_		61	8	-4	1 13	٦,	-
Cowiche	subarea						_	Ť			••	Ū	•	,,,	•	_
13/14	2	2	-	_	_	2	_	_	_		2					
13/17	10	Ž	6	2	-	3	3	1	-		4	_3	2	-	-	2
13/18	14	2	5	5	1	Ž	_	<u>-</u> `	1		8	3	ĩ	1	-	•
14/16	16	1	11	4	-	10	4	-			11	5		_'	1	_
14/17	79	20	43	15	•	41	17	-	-		44	25	4	-	•	2
TOTALS	121	27	65	26	1	63	24	1	1		69	36	7	1	1	4
Ahtanum	subarea															
12/13	2	-	_	-	_	2	_	-	_		_		_		2	_
12/14	1	1	-	-	-	÷	_	-	_	_	1	_	_	_		_
12/15	9	2	3	-	-	2	1	1	-		2	1	-	-	-	_
12/16	60	23	18	3	1	9	7	3	1		39	12	-	-	2	-
12/17 12/18	331 277	187 208	64 37	12	2	20	20	8	1		164	32	5	1	5	2
12/19	23	14	3/ 7	3 1	-	39 3	23	2	-,		185	45	2	1	5	2
3/16	2	- 17	í	_'	-	1	-6	2	1		6 2	5	4	4	2	1
13/17	83	16	63	1	-	44	13	i	-		57	1 16	-	-	_1	-4
13/18	138	89	34	ė.	1	41	35	5	3		54	29	15	4	_'	2
13/19	54	40	6	2	_	19	ii				16	ii	13	ĭ	-	ຳ
OTALS	980	580	233	30	4	180	116	23	6		526	152	39	11	17	12
loxee s	ubarea				·											
12/19	18	7	8	1	1	8	2	1	_		10	3	_	1	ı	2
2/20	51	8	13	27	2 5	12	17	i	_		17	26	-	_'	.'	18
12/21	23	1	13	3		`5	9	ż	1		'n	15	-	_	-	-
2/22	3	-	2		1	-	-	-	-		1	-	-	-	-	-
13/19 13/20	58 19	21	28	3	-	29	19	2	1		34	11	2	4	1	1
3/20	3	_1	5	1]	. 5	9	4	-	1		10	8	-	-	-	6
OTALS	175	38	- 69	1 46	2 13	63	51	-6	- 3		2 83	3 66	- 2	- 5	-2	-
			~ ~	70												27

TABLE 27.--Summary of selected data from recorded wells, by subareas--Continued

		De	pth r	ange	(ft)	Pumping	yield	range	(gal/mir	1)						
	Number of	1 to	100 to	500 to	1000 or	1 to	100 to	500 1 to	or				Use		_	Flowing
T/R	wells	99	499	999	more	99	499	999 r	nore		H	I	N	P	S	wells
Toppen i	sh subare	<u>a</u>														
9/13 10/14 10/16 10/17 10/18 10/19 10/20 10/21 11/16 11/17 11/18 11/19 11/20 12/18 12/19 TOTALS	3 1 32 77 55 64 85 23 40 44 72 94 22 13 21 646	10 50 36 51 59 21 10 8 40 70 10 11 377	1 16 12 3 15 15 6 2 9 2 9	1 6 2 2 15 6 -	3 1 1 - 5 - 7	3 1 14 38 13 25 32 11 6 9 27 53 10 2 12 256	5 5 1 3 14 1 1 2 8 8 1 2 2 5 3	6 2 3 5 - 1 3 7 6 - 2 1 35	1 4 1 - 4 - 12 - 4 6 4 1 3 7 3 7		1 21 31 35 45 44 16 28 19 48 60 10 2 16 396	5 11 6 6 16 7 11 11 3 96	1 2 3 9 - 16	1 4 1 1 4 10 1 5 26	1 - 2 - 4	3 - 1 - 9
Satus :	subarea															
7/17 7/18 7/19 7/20 8/15 8/16 8/19 8/21 8/22 8/23 8/24 9/19 9/20 9/21 9/22 9/23 TOTALS		1 3 3 1 2 37 4	1 1 16 1 2 - 1 16 9 4 53	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 1 - 2	2 2 - 2 - 1 1 6 1 1 24 8 1 48	1	2 3 1	1 1 2 2 2 6		2 14 1 2 3 33 10	4 1 1 2 4 20		2 1 1 - 4	1	1 1 2 - 1 1 1
	snake Slo					,	2					2				
8/24 9/22 9/23 9/24 9/25 9/26 9/27 10/21 10/22 10/24 11/20 11/20 11/20 11/25 12/29 12/20 Totals	4 10 29 31 25 14 12 19 28 28 7 7 11 3 46 43 13 3 1 18 6 358	2 66 8 12 5 1 4 4 8 16 8 8 1 - 1 2 12 2 - 88	8 11 4 1 7 19 20 7 2	1 3 5 1 2 1 5 1 5 3 10 16 3	2 3 3 -	1 3 8 11 8 5 4 4 10 8 3 1 1 10 3 3 - 11 10 3 3	1 2 7 8 - - 7	3 2 1 1 2 2 6 4 1 2 2 2 6 4 1 2 2 2 1 6 4 1 2 2 2 1 6 4 1 2 2 2 1 6 4 1 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2	3 - 1 3 1 5 2 15		5 70 14 9 12 8 7 7 10 4 - 6 - 21 18 4 - 5 1	2319522339235 1273 - 742	1	1 6 2 4 2 1 1 6 1 1 25		1

TABLE 27.--Summary of selected data from recorded wells, by subareas--continued

		De	pth i	range	(ft)	Pumping	yiel	1 ran	ge (gal/	min)				•		
	Number of	1 to	100 to	to	1000 or	1 to	100 to	500 to	1000 or		_	_	Use	·		Flowin
T/R 	wells	99	499	999	more	99	499	999	more		H	I	N	P	S	wells
Han for	d-Richlan	d subar	ea			-			<u></u>							
9/28	112	43	41	7	1	39	7	5	5		38	30	1	5	1	-
9/29 10/26	1	1	٠,	-	-		1	-	-		-	1	-	-	-	-
0/28	128	77	7 31	-	-	1 8	- 8	-	•					1	-	-
1/24	ī		j	-	_		8	11	11		9	7	1	14		•
1/25	i	_	_'	_	-1	-	-	-	-		-	-	-	-	1	-
1/26	31	-	5	19	Ś	_1	ī	-	-		-	-	-		-	-
1/27	ġ	-	ğ	-		_'	i	-	-		-	-	-	2	-	•
1/28	17	2	13	_	1	_	i	_	_		-	-	-	•	-	-
2/22	3	-	2	-		1		-	-		_1	1	-	-	-	•
2/23	6	-	4	-	1	-	2	1	-		i	4	_	-	2	_
2/24	5	-	1	1	3	-	_	ĺ	2			3	_	-	-	-
2/25	222	55	161	4	1	3	1	-	_		1	ĭ	_	_	ī	-
2/26	125	21	104	2	-	1	-	-	-			NUSED			•	_
2/27	23		21	1	-	-	-	-	-			NUSED				
2/28	7	3	4	-	-	-	-	-	-			NUSED				
3/24 3/25	25 34	.3	_ 3	- 11	1	, j	2	6	3		1	1	-	2	_	2
3/25 3/26	113	17 20	13	3	1	3	2	Ŧ	1		2	2	- 1	-	1	3
3/27	74	20 48	85 15	3	٠,	1		3	j		1	-	2	1	1	-
3/28	10	10	12	3	ı	1	4	7	5		5	3	2	4	1	-
4/26	64	58	-5	-	-	-]	1		1	1	-	1	-	-
4/27	36	29	6	_	-	-	2	1	-		3	7	1		3	-
OTALS	1048	387	525	51	16	- 58	2 34	37	-		4	3	•_	6	-	-
	10.0	30,	JEJ	31	,,,	30	34	3/	29		67	64	8	37	71	3
ennewi	ck subare											18	7	7.	/8	
7/30	3		-			_			_							
7/31	4	-	3	-	-]]	٠.	-	2		1	1		-	-	-
/27	ž	-	2	-	-	_ ']	-	-		2		1	1	-	-
/28	26	3	19	3		12	1 6	-	1		18	1	-	-		-
/29	24	10	11	3	_	10	í	_1	-		18	6 3	-3	-	1	-
3/30	112	91	15	4	_	38	29	6	7		54	24		-	-	-
/27	40	1	29	10	-	22	8	ĭ	í		30	12	11	5 1	-	-
/28	45	7	16	6	1	15	Ž	ż	ż		18	12	_	_'	-	-
/29	. 3	2	1	-	-	3	ī	-	_		ĭ	ï	_	_	-	-
)/27	13	7	, 6	-	-	6	2	1	-		ė	6	_	-	-	-
)/28	. 5	4	. 1	•	- .	3	-	-	-		ž	ĭ	_	1	-	
TALS	277	125	107	26	1	111	51	11	13		150	67	15	8	1	- ·
ITAL OF	F ALL SUB 3832	AREAS: 1707 1	241	200	76		400									
	3032	1707]	341	290	75	926	408	145	110		1559	601	93	130	42	61

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years [Data from U.S. Soil Conservation Service (written commun., 1979)]

Green Lake 21C10

21C10 elev. 6,000 ft. lat 46 deg 33 min long 121 deg 10 min Record began 1941 sec. 03 T12N R13E Number of sample points - 6 Measured by Department of Natural Resources

Parameters measured - snow course only Remarks - snow course in open meadow in dense timber on SW slope

	February 1				'March 1			April 1			May	3
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water eguly. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)
		110.7	(10.7		110.7	(30.7		((11.)	110.1		110.7	1111.
1941							3/23	61	24.3			
1942							3/26	72	30.9			
1943				3/01	101	29.2	-,					
1944				•, • •			3/19	50	18.9			
1945				2/28	55	16.9	4/09	94	25.4			
1946				3/03	110	32.8	.,					
1947				3/01	97	41.7						
1948				2/29	87	31.3						
1949				-/	٠.	31.0	3/27	132	47.4			
1950				2/27	135	45.4	٠, ١,	102	4, ,			
1951				2/25	101	24.1						
1953				3/01	87	37.2	3/29	88	34.0			
1955				3/06	77	24.2	4/05	59	21.5			
1956				3/02	109	38.8	3/30	97	37.4			
1957				2/28	54	15.1	4/01	70	25.4			
1958				3/03	50	22.3	3/30	81	28.9			
1959				3/03	59	16.0	3/29	69	25.1			
1960				3/01	51	16.3	4/01	7ŏ	25.0			
1961				3/02	ากัก	36.7	3/31	106	44.5			
1962				3/01	82	28.3	3/31	96	37.2			
1963				2/26	44	18.0	3/29	81	23.5			
1964				2/24	78	24.0	3/25	104	40.3			
1965				2/23	85	31.0	3/26	83	32.0		•	
1966				2/24	76	28.8	3/25	102	39.0			
1967				2/24	89	33.2	3/27	111	43.5			
1968	1/26	57	16.2	2/26	68	27.5	3/27	72	29.3			
1969	1,20	٠.	10.2	2/24	100	36.2	3/26	88	37.7			
1970				2/24	92	34.3	3/27	92	38.2			
1971				2/24	100	38.8	3/2/	32	JU. L			
1972				2/25	118	45.8	3/27	124	54.5			
1973	1/29	58	18.2	2/23	56	19.7	3/29	59	23.0			
1974	1/29	93	25.2	2/25	115	37.3	4/02	120	46.8			
1975	1/28	88	31.8	2/25	108	33.0	3/26	125	36.3			
1976	1/27	61	23.0	2/25	110	33.3	3/24	110	32.3			
1977	1/24	8	2.3	2/23	12	33.3	3/28	39				
13/1	1/24	•	2.3	2/24	16	3.0	3/28	39	12.0			

Morse Lake 21C17

21C17 elev. 5,400 ft lat 46 deg 54 min long 121 deg 29 min Record began 1956 sec. 06 T16N R11E Number of sample points - 10 Measured by Soil Conservation Service Parameters measured - snow course only

Remarks - snow course on protected lake shore in valley bottom

	February 1 Snow Water				March 1			April }			May	
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	water equiv. (in.)
1956	2/01	174	60.0				4/03	199	78.0	4/30	154	78.6
1957	1/28	71	20.0	3/03	108	39.4	4/02	142	54.6	5/01	117	52.4
1958	1/31	130	42.0	2/28	127	53.8	4/01	136	62.8	4/29	138	65.4
1959	1/29	121	35.2	3/04	140	50.0	4/03	153	55.6	5/04	120	72.4
1960	2/01	66	24.2	3/01	92	30.9	4/01	121	47.8	5/03	102	37.2
1961	2/01	110	41.0	2/28	169	45.6	3/30	166	67.1	4/28	156	78.0
1962	1/31	83	32.4	3/01	117	36.4	3/30	129	50.2	5/01	140	62.6
1963	1/28	62	20.6	2/25	76	28.0	3/28	97	32.4	4/29	109	44.2
1964	1/29	148	43.6	2,26	128	49.2	3/27	159	64.4	4/28	142	66.2
1965	1/30	131	45.6	2/24	140	54.4	3/30	145	65.6	4/30	118	55.2
1966	1/27	103	32.8	3/28	130	42.2	3/30	130	74.2	4/28	101	43.8
1967	1/30	148	51.8	3/02	150	58.8	3/30	171	76.6	5/02	167	84.4
1968	1/30	98	31.6	2/28	108	44.2	3/27	133	53.0	4/30	102	48.4
1969	1/29	140	50.8	2/27	158	63.4	3/27	146	68.2	4/29	137	65.6
1970	1/30	130	38.0	2/25	133	55.0	3/30	137	46.2	4/28	149	62.4
1971	·		_	2/25	158	56.0	3/30	236	94.4	4/29	207	102.4
1972	1/31	175	62.6	-,			3/29	184	69.8	4/27	183	87.8
1973	1/29	91	33.2	2/26	94	36.4	3/29	102	42.8	4/30	79	41.2
1975	1/28	134	55.6	2/27	157	71.0	3/28	176	68.6	4/29	162	88.1
1976	1/28	97	36.7	3/04	149	47.4	3/31	158	57.6	4/26	152	59.5
1977	1/27	13	3.0	2/25	24	7.7	3/30	72	19.9	5/01	41	18.0

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years--Continued

White Pass (E side)

21C28 elev. 4,500 ft lat 46 deg 38 min long 121 deg 23 min Record began 1953 sec. 02 T13N R11E

Number of sample points - 7

Measured by U.S. Geological Survey

Parameters measured - snow course only Remarks - snow course in dense timber at Pass

	February 1				March 1			April 1	1	Hay 1		
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)
1953 1954	2/05 2/05	62 93	21.9 22.9									.
1955	2/02	41	12.7									
1957	2/06	49	11.6							4/25	55	22.4
1958	2/05	67	22.3	3/06	65	22.6	4/03	72	27.0	4,23	55	22.7
1959	2/06	45	13.1	3/06	53	17.4	4/03	64	22.7	4/30	47	19.3
1960 1961	1/29 2/01	20 39	4.8	2/29	39	11.0	3/31	48	15.7	4/28	45	18.1
1962	1/30	39 40	13.1 14.8	3/01 2/28	68 47	18.4 13.6	3/30	69	28.0	4/28	66	28.5
1963	1/30	20	6.7	2/27	23	9.0	4/03 3/28	62 31	21.7 9.7	4/30 4/29	49 33	20.3
1964	1/30	69	20.1	2/27	68	25.1	3/30	82	29.9	4/29	75	14.5 32.1
1965	1/28	75	24.3	2/26	68	26.0	3/30	70	29.4	4/30	45	22.4
1966	1/31	54	16.1	3/01	76	21.5	3/31	64	25.0	4/28	44	19.6
196 7 1968	1/31	49 38	15.6	2/27	60	20.9	3/29	74	24.6	5.02	73	28.4
1969	1/31 1/30	36 77	9.4 23.4	2/29 2/27	23 85	9.0 30.9	3/30 3/28	25	9.1	4/29	25	10.2
1970	1/30	62	19.3	2/27	64	24.1	4/01	76 61	30.4 25.1	4/30 5/01	58 64	29.0 29.1
1971	1/29	82	29.9	3/02	80	32.3	4/01	97	41.7	4/30	85	40.1
1972	1/25	112	40.9	2/28	101	48.7	3/30	102	48.3	5/02	105	51.9
1973 1974	1/30 2/05	29	9.1	2/26	29	10.1	3/28	34	11.9	•		
1975	1/30	88 58	27.7 20.9	2/28 2/27	106 77	35.9	4/02	98	36.9	4/29	96	45.3
1976	1/29	40	12.7	3/01	89	27.3 24.4	4/02 3/29	90 93	32.4	5/01	82	33.6
1977	1/28	ŏ		2/28	8	1.4	3/30	30	28.4 7.4	4/28 5.01	73 0	29.7 .0
				_				• •	•••	3.51	•	
	<u>F</u>	ebruary			March 1	5		April 1	5		May	15
V	D-4-	Snow	Water		Snow	Water		200A	Water		Snow	Water
Year	Date	depth	equiv.	Date	depth	equiv.	Date	depth	equiv.	Date	depth	equiv.
								1.1.1.1	(_		1
1953 1954				3/13	69	24.2	4/17	82	32.1	5/18	48	23.4
1955				3/12	97 87	37.6	4/15	101	42.7	5/17	69	33.4
1956				3/14	0/	24.8	4/14 4/18	91 116	31.5 56.7	5/17 5/09	75	33.4
1957				3/13	69	18.3	4/10	110	50.7	5/09	100	49.0
1958 -							4/15	65	26.1	5/08	50	23.7
1959 1960							4/15	58	21.7	5/15	37	15.2
1961				3/14	56 75	15.0	4/14	39	14.1	5/16	26	11.6
1962	2/14	45	15.6	3/15 3/15	59	26.4 17.4	4/14 4/16	65 50	26.1 21.4	5/15	56	26.1
1963	2/14	22	9.7	3/14	28	9.4	4/15	36	13.6	5/16	40	17.3
1964	2/14	65	23,1	3/13	89	28.9	4/14	78	31.1	5/14	64	28.4
1965 1966	2/16	68	25.2	3/15	65	26.6	4/14	61	27.6	5/14	37	17.6
1967						24.7	4/18	50	22.7	5/13	28	14.1
	2/15 2/15	60 67	19.9	3/15	69 74							
1968	2/15	67	20.2	3/15	74	23.1	4/14	72	26.7	5/15	58	25.4
1968 1969	2/15 2/15 2/19			3/15 3/18 3/13		23.1 9.1						
1969 1970	2/15 2/15 2/19 2/13	67 30 84 61	20.2 9.9 30.0 21.7	3/15 3/18 3/13 3/13	74 25	23.1 9.1 30.9 25.4	4/14	72	26.7			
1969 1970 1971	2/15 2/15 2/19 2/13 2/17	67 30 84 51 68	20.2 9.9 30.0 21.7 30.0	3/15 3/18 3/13 3/13 3/18	74 25 83 67 96	23.1 9.1 30.9 25.4 37.7	4/14 4/16 4/14	72 31 94	26.7 10.3 41.6	5/15 5/17		
1969 1970 1971 1972	2/15 2/15 2/19 2/13 2/17 2/18	67 30 84 61 68 107	20.2 9.9 30.0 21.7 30.0 46.4	3/15 3/18 3/13 3/13 3/18 3/16	74 25 83 67 96 104	23.1 9.1 30.9 25.4 37.7 51.6	4/14 4/16 4/14 4/17	72 31 94 112	26.7 10.3 41.6 50.9	5/15	58	25.4
1969 1970 1971	2/15 2/15 2/19 2/13 2/17 2/18 2/14	67 30 84 61 68 107 32	20.2 9.9 30.0 21.7 30.0 46.4 9.3	3/15 3/18 3/13 3/13 3/18 3/16 3/15	74 25 83 67 96 104 34	23.1 9.1 30.9 25.4 37.7 51.6 11.1	4/14 4/16 4/14 4/17 4/13	72 31 94 112 25	26.7 10.3 41.6 50.9 10.2	5/15 5/17 5/15	58 67 84	25.4 31.6 46.1
1969 1970 1971 1972 1973 1974 1975	2/15 2/15 2/19 2/13 2/17 2/18 2/14 2/13 2/14	67 30 84 51 68 107 32 85 78	20.2 9.9 30.0 21.7 30.0 46.4 9.3 27.7 24.9	3/15 3/18 3/13 3/13 3/18 3/16	74 25 83 67 96 104	23. 1 9. 1 30. 9 25. 4 37. 7 51. 6 11. 1 39. 7	4/14 4/16 4/14 4/17 4/13 4/16	72 31 94 112 25 102	26.7 10.3 41.6 50.9 10.2 45.4	5/15 5/17 5/15 5/16	58 67 84 84	31.6 46.1 38.1
1969 1970 1971 1972 1973 1974 1975 1976	2/15 2/15 2/19 2/13 2/17 2/18 2/14 2/13 2/14 2/17	67 30 84 61 68 107 32 85 78 64	20.2 9.9 30.0 21.7 30.0 46.4 9.3 27.7 24.9 17.1	3/15 3/18 3/13 3/13 3/18 3/16 3/15 3/18 3/18 3/16	74 25 83 67 96 104 34 105 92 75	23.1 9.1 30.9 25.4 37.7 51.6 11.1 39.7 30.6 24.1	4/14 4/16 4/14 4/17 4/13 4/16 4/15 4/15	94 112 25 102 89 74	26.7 10.3 41.6 50.9 10.2	5/15 5/17 5/15	58 67 84	25.4 31.6 46.1
1969 1970 1971 1972 1973 1974 1975	2/15 2/15 2/19 2/13 2/17 2/18 2/14 2/13 2/14	67 30 84 51 68 107 32 85 78	20.2 9.9 30.0 21.7 30.0 46.4 9.3 27.7 24.9	3/15 3/18 3/13 3/13 3/18 3/16 3/15 3/18 3/18	74 25 83 67 96 104 34 105 92	23.) 9. 1 30. 9 25. 4 37. 7 51. 6 11. 1 39. 7 30. 6	4/14 4/16 4/14 4/17 4/13 4/16 4/15	72 31 94 112 25 102 89	26.7 10.3 41.6 50.9 10.2 45.4 34.0	5/15 5/17 5/15 5/16	58 67 84 84	31.6 46.1 38.1

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years--Continued White Pass (E side) -- Continued

Year Date Snow Water depth equiv. Date depth equ		January l			January 15			June 1			June 15			
1963	Year	Date	depth	enuiv	Date	depth		Date	depth		Date	depth	Water equiv. (in.)	
1963	1961	12/30	37	9.6	1/13	38	12.1							
1964 12/30 32 9.1 1/14 48 12.2 1965 1/06 64 18.1 1/15 58 18.7 1966			20			20	7.5							
1965	1964		32	9.1	1/14	48	12.2							
1966	1965	1/06	64	18.1	1/15	58	18.7							
1967		·			1/11	48	13,4							
1968 1/02 11 3.9 1/16 20 6.4 1969	1967	1/05	39	7.9	1/17	37	11.7							
1970	1968	1/02	11	3.9	1/16	20	6.4							
1971	1969			•	1/15	70	20.1							
1972 12/30 57 17.3 1973 1/04 22 5.7 1/17 27 8.1 1974 1/03 70 19.6 1/18 64 21.3 1975 12/30 37 9.6 1/16 65 18.9 1976 12/31 23 6.6 1/15 54 14.0 6/15 21 Miscellaneous measurements Year Date Snow Water Snow Water Snow Water Snow Water (in.) (1970	1/02	31	6.7	1/20	48								
1973	1971	1/05	54	15.4	1/16	69	20.4							
1974	1972	12/30	57	17.3										
1975 12/30 37 9.6 1/16 65 18.9 1976 12/31 23 6.6 1/15 54 14.0 6/15 21 Miscellaneous measurements Miscellaneous measurements Year Date Snow Water depth equiv. Date depth e	1973	1/04	22	5.7			8.1							
1976 12/31 23 6.6 1/15 54 14.0 6/15 21	1974	1/03	70	19.6										
Miscellaneous measurements Snow Water														
Year Date Snow Water Snow Water Snow Water Gentle Gullet Gentle Gullet Gentle Gullet G	1976	12/31	23	6,6	1/15	54	14.0				6/15	21	9.8	
Year Date depth equiv. Date de		•			Mi	scellane	ous measus	rements						
1964 12/13 27 6.5 1966 11/30 7 1.4 1968 12/19 18 4.5 1969 12/03 12 3.2 12/16 39 8.2	Year	Date	depth		Date	depth		Date	depth		Date		Water equiv. (in.)	
1964 12/13 27 6.5 1966 11/30 7 1.4 1968 12/19 18 4.5 1969 12/03 12 3.2 12/16 39 8.2	1963	11/28	13	2 4	12/13	22	5.9							
1966 11/30 7 1.4 1968 12/19 18 4.5 1969 12/03 12 3.2 12/16 39 8.2					12,10		0.13							
1968 12/19 18 4.5 1969 12/03 12 3.2 12/16 39 8.2														
1969 12/03 12 3.2 12/16 39 8.2														
					12/16	39	8.2							
	1970	12/18	18	5.0	,	•••								
1971 12/07 27 6.9 12/18 35 9.9					12/18	35	9.9							
1972 12/01 22 5.1 12/15 53 11.8														
1974 11/28 36 8.6 12/14 44 11.5														
1975 12/16 23 5.5					,		- / • •							
1976 12/18 17 4.8														

Satus Pass

20001 elev. 4,030 ft lat 45 deg 59 min long 120 deg 41 min Record began 1958 sec.21 T06N R17E

Number of sample points - 10

Measured by Soil Conservation Service

Parameters measured - snow course only

Remarks - snow course along old logging road through timber S facing

	February 1			March 1				April_1		May 1		
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)
1957				2/26	15	4.9	3/28	23	8.9			
1958	2/03	30	9.6	3/03	24	8.8	4/01	22	7.7			
1959	2/02	3	1.0	3/04	13	5.2	4/02	11	4.7	5/04	0	0.0
1960	2/02	14	3.4	3/02	24	6.3	4/05	9	3.3	5/02	1	.2
1961	2/01	7	3.0	3/01	8	2.6	4/03	5	1.8	5/01	0	.0
1962	2/02	12	5.2	3/01	31	8.3	4.02	28	11.1	5/02	0	.0
1963	1/30	6	. 5	2/28	0	.0	3/27	1	.2	4/29	0	.0
1964	2/03	28	9.5	2/27	25	10.3	3/30	30	11.9	4/28	10	4.7
1965	1/28	44	14,6	2/26	30	11.8	3/29	27	11.2	4/29	0	.0
1966	1/31	49	17.1	2/28	49	15.3	3/31	45	18.9	4/29	13	6.1
1967	1/31	13	4.3	2/27	13	4.6	3/30	8	2.7	4/28	0	.0
1968	1/31	13	4.3	2/28	0	.0	3/28	0	.0	4/29	0	.0
1969	2/01	58	14.9	2/27	57	14.4	3/27	41	18.0	4/29	6	2.5
1970	1/29	39	12.1	2/27	34	12.8	4/01	24	9.9	4/30	0	0
1971	1/28	45	16.6	2/25	37	14.1	3/31	51	19.9	4/29	30	13.0
1972	1/27	50	13.8	2/28	35	15.8	3/30	17	8.3	4/28	0	.0
1973	1/31	12	3.1	2/28	0	.0	3/29	0	.0			
1974	1/30	35	12.0	2/28	54	13.7	3/28	44	16.2	4/30	16	7.8
1975	.1/30	26	8,6	2/28	39	14.0	3/31	49	16.6	4/29	29	12,8
1976	1/30	7	1.8	2/27	34	7.8	3/31	30	10.4			
1977	1/28	0	.0	2/28	4	1.2	4/02	0	.0			

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years--Continued

Bumping take

21C08 elev. 3,450 ft lat 46 deg 52 min long 121 deg 18 min Record began 1915 sec. 23 T16N R12E

Number of sample points - 8

Measured by U.S. Bureau of Reclamation Parameters measured - snow course only Remarks - snow course scattered through campground in timber below dam

	February 1			March 1				April 1		May 1		
		Snow	Water		Zuow	Water		Snow	Water		Snow	Water
Year	Date	depth	equiv.	Date	depth	equiv. (in.)	Date	depth	equiv.	Date	depth	equiv.
								1,0,00			(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1915	2/00	31	7.6	3/00	36	11.0	4/00	17	6.3			
1916 1917	2/00	41		2 /00						5/15	43	17.2
1918	2/00	41	11.7	3/00	42	11.3	4/00	48	13.4			
1919				3/00	34	8.3	4/00	30	9.6			
1921	2/00	53	15.2	3/00	48	17.1	4/00 4/00	42 44	13.0			
1922	-,	**	10.2	3,00	70	17.4	4/00	50	17.5 14.5	4 (20	20	12.0
1923	2/00	47	15.8	3/00	48	16.4	4/00	40	15.1	4/20	38	13.9
1924				3/00	23	8.0	4/00	17	5.6	5/00	0	0.0
1925	2/00	37	11.6	3/00	43	14.5	4/00	31	11.2	5/00	ŏ	.ŏ
1926	2/00	23	4.8	3/00	27	7.4	4/00	0	.0	5/00	ŏ	.ŏ
1927 1929	2/00	60	15.3	3/00	72	19.3	4/00	56	18.6	5/00	25	11.0
1930	2/00 2/00	51 25	10.4	3/00	40	11.6	4/00	26	10.4			
1931	2/00	35 32	9.4 9.7	3/00	34	10.3						
1932	2/00	45	10.5	3/00 3/00	37 34	10.3	4/00	27	8.6	5/00	0	٠٥
1933	2/00	55	12.6	3/00	6 9	12.0 17.6	4/00 4/00	27	10.7	F 100		
1934	2/00	22	6.6	3/00	18	6.3	4/00	62 0	23.2 .0	5/00	33	12.5
1935	2/00	42	12.6	3/00	45	14.2	4/00	48	15.5	5/00	21	8.0
1936	2/00	53	13.8	3/00	71	18.9	4/00	78	21/1	5/00	23	9.4
1937	2/01	27	5.5	2/28	46	13.2	4/01	34	13.3	4/30	12	4.6
1938	1/31	47	11.9	2/28	53	15.0	3/31	56	18.8	4/30	13	4.9
1939	1/31	33	6.6	2/28	43	10,9	3/31	33	10.7	5/01	0	.0
1940 1941	1/31	23	5.8	2/29	41	10.8	3/30	20	6.9			
1942	1/31 1/31	29	7.2	2/28	30	8.4	3/28	13	4.4			
1943	1/31	26 68	6.2 18.2	2/28	39 61	10.0	3/31	23	8.3			
1944	1/31	18	5.3	2/28 2/29	61 27	22.4 7.7	3/31	61	21.4	4/30	24	10.7
1945	1/31	14	4.7	2/28	25	8.1	3/31 3/31	16 31	6.8 11.2	4/20		
1946	1/31	73	20.4	2/28	77	26.4	3/31	64	26.2	4/30 4/30	14 35	5.4 15.8
1947	1/31	38	9.9	2/28	33	11.8	3/31	24	9.3	5/01	0	.0
1948	1/31	30	8.2	2/28	43	13.1	3/31	43	14.6	4/30	22	8.8
1949	1/31	62	19.3	3/02	86	31.1	3/31	72	32.5	4/30	30	15.2
1950 1951	1/31	71	19.9	2/28	66	12.6	3/31	74	26. 6	4/29	47	21.8
1952	1/31 1/31	50 56	14.9 17.1	2/28	62	24.2	3/30	53	20.2	4/30	17	9.1
1953	1/30	40	12.9	2/2 9 2/27:	55 39	19.9	3/31	40	16.4	4/30	. 8	3.3
1954	1/29	82	19.5	2/26	82	15.1 26.8	3/31 3/31	35 63	14.0 26.1	4/30	22	8.7
1955	1/31	23	6.6	2/27	32	9.8	3/31	46	14.6	4/29 4/29	33 37	15.8 12.5
1956	1/31	99	31.9	2/29	105	38,6	3/29	99	37.9	5/01	60	25.0
1957	1/30	15	3.4	2/27	26	8.1	3/29	35	14.0	4/30	4	2.1
1958 1959	1/30	49	14.9	2/27	43	16.6	3/31	38	16.3	4/29	20	9.6
1960	1/29 1/29	31 21	10.8 5.0	2/26	42	13.5	3/31	39	15.0	5/01	5	2.1
1961	1/30	21 37	5.0 10.8	2/27 2/27	32	8.9	3/30	35	12.9	4/28	22	9.1
1962	1/30	29	7.5	2/28	52 32	14.7 8.4	3/30 3/29	46	15.1	4/29	22	9.2
1963	1/29	9	2.9	2/26	12	5.6	3/28	44 10	13.4 3.4	4/28 4/29	14 4	4.9 1.5
1964	1/30	57	15.2	2/27	50	17.5	3/30	52	19.8	4/29	29	12.8
1965	1/28	57	17.9	2/25	47	17.6	3/30	41	16.3	4/29	12	4,4
1966	1/28	47	14.4	2/25	47	16.1	3/31	49	19.8	4/27	21	10.9
1967	1/29	30	10.2	2/28	35	12.1	3/30	37	13.2	5/01	31	11.6
1968 1969	2/05	33	9.2	2/28	25	10.3	4/01	16	6.8	5/01	0	.0
1970	1/31 1/31	73 71	17.4 22.2	2/28	62	20.6	3/31	42	18.2	5/01	18	9.1
1971	1/31	52	21.5	3/02 3/01	60 54	25.2	3/31	50	22.2	4/29	41	19.2
1972	1/31	57	18.9	3/01	61	22.8 20.4	3/30 3/31	70 49	29.5	5/03	42	20.9
1973	1/31	28	8.0	2/28	22	77.7	3/31	49 17	20.5 6.6	5/01	32	16.2
1974	2/04	71	20.2	3/01	79	26.0	4/01	72	28.2	5/01 4/30	0 46	0 19.9
1975	1/31	44	13,1	2/28	57	17.9	3/31	58	20.9	4/30	39	14.8
1976 1977	1/31	28	8.7	2/29	71	15.9	3/31	57	18.9	4/30	28	11.4
1311	1/28	0	.0	2/28	0	.0	3/31	10	3.1	5/02	ō	.0

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years--Continued

Bumping Lake -- Continued

	February 15			March 15				April 1		May 15 /		
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)
1949 1950 1951 1952 1953							4/15 4/15 4/16 4/15	48 60 27 25	21.9 23.8 11.9 10.8	5/15 5/15 5/15 5/15 5/15 5/14	7 26 4 0 0	2.8 12.8 1.6 .0 .0
1954 1955 1956							4/15	53		5/17 5/17	14 39	4.1 18.1
1957 1958 1959				3/15 3/14 3/16	47 44 37	12.6 17.0 14.0	4/15 4/15 4/14	22 31 23	9.4 12.9 9.4	5/16	0	.0
1960 1961	2/14	50	12.4	3/12 3/14	48 57	13.2 17.5	4/14 4/13	27 32	8.4 13.5	5/12 5/15	0 4 0	.0 1.6 .0
1962 1963	2/14 2/14	33 16	9.4 5.8	3/15 3/14	42 12	13.0 4.3	4/14 4/13	25 11	9.0 4.0	5/16 5/15	0	.0
1964 1965	2/14 2/14	54 51	15.0 19.2	3/14 3/13	62 43	18.2 17.8	4/14 4/13	39 29	16.1 11.1	5/14 5/15	9 0	4.2 .0
1966 1967	2/14 2/14	55 42	17.4 11.4	3/14 3/17	54 42	19.6 13.4	4/14 4/13	38 33	16.5 12.2	5/14	0	.0
1968 1969	2/15 2/14	31 68	10.1 20.8	3/14 3/14	20 58	8.5 20.4	4/16	8	4.5	5/15	0	.0
1970 1971 1972	2/18 2/12 2/16	64 49 53	25.1 21.2 20.6	3/16 3/15 3/15	58 73 56 22	25.8 29.0 22.6	4/16 4/14 4/12	62 45 7	28.2 19.5 3.4	5/14 5/14	20 8	10.5 4.4
1973 1974	2/13 2/12	26 66	7.9 21.1	3/14 3/15	81	7.9 27.9	4/15	64	28.2	5/15	24 11	9.8 5.0
1975 1976 1977	2/13 2/13 2/15	59 30 0	18.0 9.1 .0	3/21 3/15 3/14	68 54 14	21.6 16.5 2.9	4/14 4/14 4/15	51 42 0	20.4 15.2 .0	5/15 5/14	4	1.8
		January			January	15		June l			June 1	
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)
1915	1/00	21	4.4									
1927 1929	1/00 1/00	29 37	7.5 5.9								·	
1930 1931	1/00 1/00	27 25	7.3 4.1									•
1932 1933	1/00 1/00	39 54	7.5 10.1									
1934 1935	1/00 1/00	18 38	4 2 6 4									
1936	1/00	26	5.9									
1937 1938	1/02 12/31	8 28	2.0 7.8									
1939 1940	1/01 1/02	17 13	3.8 3.5									
1942	12/31	19	3.6									
1943 1944	12/31 1/03	- 53 20	12.8 3.2									
1945	12/31	16	3.9									
1946 1947	12/31 12/31	43 16	13.0 5.6									
1948 1949	12/31	10 80	2.0									
1950	1/01 12/30	24	18.1 5.3									
1951 1952	12/31 12/31	23 49	8.5 11.7									
1953	12/31	37	8.1									
1954 1955	12/30 12/30	13 22	3.8 3.2									
1956	12/31	67	22.5									
1957 1958	1/01 12/30	0 30	.0 8.1									
1959 1960	12/30 12/30	19 10	6.1 2.8									
1961	12/29	32	6.6	1/14	32	10.9						
1962 1963	12/28 12/27	37 10	10.2 2.9	1/13 1/12	28 8	7.6 2.6						

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years--Continued

Bumping Lake -- Continued

		January 1			January	15		June 1			June 1	5
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth	Water equiv.
1964	12/30	20	4.8	1/14	36	8.4		_				
1965	12/29	53	9.9	1/15	52	15.4						
1966	12/29	47	6.4	1/14	49	14.2						
1967	12/29	12	3.8	1/12	18	4.7						
1968	1/02	11	3,5	1/17	27	8,2						
1969				1/13	58	14.7						
1970	1/02	29	8.9	1/15	42	12.0						
1971	12/31	54	14.1	1/18	55	18.9						
1972	1/03	34	9.2	1/14	49	14.6						
1973	1/02	13	3.6	1/18	21	6.5						
1974 1975	1/02	56	14.4	1/20	57	16.8						
1975	12/31	27	5.9	1/15	48	11.9						
1977	12/31	14	3.7	1/18	31	7.6						
1277	12/29	0	.0									
		Mi.	scellaneou	ıs measur	ements							
1945	12/01											
1946	11/29	23 29	3.7									
1947	11/29	19	7.2 4.7									
1949	11/30	31	4.9									
1951	11/30	19	5,2									
1952	11/30	21	6.0									
1957	11/30	28	7.4									
1959	11/29	14	4.9									
1961	11/28	15	3.8	12/15	18	4.2						
1962	12/04	18	3.8	12/14	21							
1963	12/01	14	3.2	12/13	រ៉ា	3.9 2.8						
1964	11/29	Ö	.0	12/13	'7	2.2						
1965	17/28	21	2.4	12/17	20	3.8						
1966	11/30	4	.6	, . ,	20	3.0						
1967	12/15	14	3.3									
1968	12/01	5	.6	12/20	14	3.2						
1969	12/02	2	.1	12/19	20	4.1						
1970	12/18	21	4.2			7						
1971	12/01	22	3.9	12/16	41	9.0						
1972	11/30	17	3.2	12/16	34	5.8						
1974	11/30	29	7.5	12/13	37	9.1						
1975	12/17	15	3.4									
1976	12/18	9	2.3									

TABLE 28.--Snow depths and water equivalents at selected snow courses, 1960-77 water years--Continued

Ahtanum River S.

21C11 elev. 3,100 ft lat 46 deg 31 min long 121 deg 01 min Record began 1940 sec.26 T12N R14E
Number of sample points - 13
Measured by Department of Natural Resources
Parameters measured - snow course only
Remarks - snow course in open grass meadow behind ranger station

	F	ebruary			March 1			April 1 Snow	Water		May Snow	1 Water
Year	Date	Snow depth (in.)	Water equiv. (in.)	Date	Snow depth (in.)	Water equiv. (in.)	Date	depth (in.)	equiv.	Date	depth (in.)	equiv.
1941	2/01	23	8.6	3/01	18	8.2						
1942	2/01	31	10.1	3.01	30	8.7	4/01	11	5.3			
1943 1944	2/01 2/02	45 7	10.0 1.7	3/01 2/29	32 15	10.1 4.4						
1944	2/02	າາ໌	2.8	3/01	16	4.3	4/07	7	1.6			
1946	2/02	35	11.1	3/05	29	9.6	•					
1947	2/01	13 23	3.1 4.9	3/01 3/01	4 23	2.4 7.6	4/02	17	6.0			
1948 1949	2.01 2/03	30	10.0	3/01	38	11.9	3/27	28	10.0			
1950	2/01	32	7.8				4/03	22	8.4			
1951	2/02	40 12	7.9 4.9	2/25	23	6 .6						
1953 1954	2/03 2/04	28	6.4									
1955	2/01	14	3.4	3/01	24	4.4	4/01	13	5.4	5/07	0	0.0
1956	2/01	60	16.6	2/29	57 8	18.1 2,3	4/01 4/01	40 7	16.4 2.3	5/01 5/01	0	.0 .0
1957 1958	. 2/02 2/04	10 25	2.0 9.0	3/01 3/03	18	5.0	3/31	13	3.8	4/28	0	.0
1959	2/01	12	3.6	3/04	22	6.4	3/30	18	4.0	5/01	0	٥.
1960	2/01	16	3.1	2/29	21	4.8 5.0	4/01 4/01	. 7 0	2.2 .0	5/01 5/01	0	0. 0.
1961 1962	2/01 1/31	17 14	4.8 5.2	2/27 2/28	17 23	7.3	4/01	16	7.0	5/01	ŏ	.0
1963	1/29	ō.	.ō	2/27	0	.0	3/30	8	3.0	5/01	0	.0
1964	1/27	22	4.4	2/24	22	5.8	3/26	15	5.5 7.0	4/30 4/30	0	.0 .0
1965 1966	1/27 1/30	38 34	10.0 8.2	2/23 2/24	25 32	7.6 9.6	3/26 3/27	17 26	9.8	5/01	ŏ	.0
1967	1/27	12	2.8	2/24	ő	.0	3/27	Ō	.0	5/01	0	.0
1968	1/28	24	5.2	2/26	17	6.0	3/28	0	0	4/30	0	.0
1969	1/27	40 43	10.2 8.2	2/24 2/24	47 31	13.2 11.2	3/26 3/27	31 22	13.0 8.2	5/01	U	.0
1970 1971	1/27 1/27	27	8.7	2/24	19	7.1	3/26	29	10.3	4/26	. 0	.0
1972	1/27	38	10.7	2/25	31	11.8	3/27	10	4.3	5/01	0	.0
1973	1/26	12 22	4.0	2/23 2/27	13 23	3.2 7.6	3/29 3/26	0 22	.0 10.6	5/01	0	.0
1974 1975	1/29 1/28	28	10.2 6.8	2/25	36	12.8	3/26		13.0	٠,٠.	Ţ	
1976	1/27	8	2.2	2/24	14	3.4	3/25	18	5.6	5/01	0	.0
1977	1/24	0	٥٠.	2/24	1	.5	3/28	0	.0			
		January Snow	Water		January Snow	/ 15 Water		June 1 Snow	Water		June Snow	15 Water
Year	Date	depth (in.)	equiv.	Date	depth (in.)	equiv.	Date	depth (in.)	equiv. (in.)	Date	depth (in.)	equiv
1941	1/01	15	3.1	1/15	18	8.7						
1942 1943	1 /01	34	8.2	1/13	10	0.7				•		
1944	1/01	5	2.6									
1945 1946	1/01 1/01	5 24	1.9 9.0									
1949	1/01	33	9.4									
1950	1/04	11	2.1									
1953 1955	1/01 1/01	23 7	5.5 2.1									
1956	1/01	45	9.3									
1957	1/01	0	.0									
1958 1960	1/01 1/01	0	.0 .0									
1961	12/31	16	3.8									
1962	12/31	17	5.0									
1963 1964	12/28 12/27	0 13	.0 2.5									
1965	12/27	32	6.2									
1966	12/27	27	3.2									
1967 1968	12/27 12/27	8 10	2.0 3.2									
1969	12/27	22	4.0									
1970	12/26	22	4.6									
	12/27	22 29	5.3 6.2									
1971	12/27											
	12/27 12/27	6	1.5									
1971 1972 1973 1974	12/27 12/28	6 37	1.5 5.8									
1971 1972 1973	12/27	6	1.5									

TABLE 29.--End-of-month contents of Bumping and Rimrock Reservoirs, 1960-77 water years

[Data from U.S. Bureau of Reclamation (written commun., 1978)]

12487500 BUMPING LAKE.-- Lat 46° 52' 25", long 121° 17' 57", in SWi sec. 14 (unsurveyed), T. 16 N., R. 12 E., Yakima County, Hydrologic Unit 17030002, Snoqualmie National Forest, at outlet of dam on Bumping River, 2.2 mi (3.5 km) southwest of Goose Prairie, 10 mi (16 km) southwest of town of American River, 19 mi (31 km) west of Nile, and at mile 17.0 (27.4 km). DRAINAGE AREA, 69.3 mi² (179.5 km²). PERIOD OF RECORD, June to July 1906, April 1909 to current

17.0 (27.4 km). DRAINAGE AREA, 09.3 mi~ (179.5 km~). PERIOD OF RECORD, June to July 1906, April 1909 to current year. GAGE, water-stage recorder. Datum of gage is at mean sea level (Bureau of Reclamation benchmark). Prior to Nov. 23, 1966, nonrecording gage at same site and datum.

REMARKS.-- Reservoir is formed on natural lake by earth-fill dam completed in 1910; storage began Nov. 3, 1910. Usable capacity, 33,700 acre-ft (41.6 km³) between elevation 3,389.00 ft (1,032.967 m), invert of gate sill and 3,426.00 ft (1,044.245 m), spillway crest. Figures given herein represent usable contents. Water is used for

frigation.

COOPERATION.-- Records furnished by Bureau of Reclamation and reviewed by Geographical Survey.

EXTREMES FOR PERIOD OF RECORD.-- Maximum contents observed, 39,840 acre-ft (49.1 hm³) June 21, 22,
1925, elevation, 3,430.55 ft {1,045.632 m}; minimum observed, 1,130 acre-ft (1.39 hm³) Feb. 5, 6, 7, 8, 9, 1949,
elevation, 3,390.80 ft (1,033.516 m).

EXTREMES FOR CURRENT YEAR.-- Maximum contents, 35,590 acre-ft (43.9 hm³) June 8, elevation,
3,427.43 ft (1,044.681 m); minimum, 4,100 acre-ft (5.06 hm³) Jan. 16, elevation, 3,395.37 ft (1,034.909 m).

Station 487500 Bumping Reservoir End-of-Month Contents

Year	0ct				Feb	March	April	May	June	. July	Aug	Sept		
1960	78	181		57	74	144	189	310		165	98	49	1,799	
1961	48	126	82	119	131	167	215	260		147	71	48		
1962	54	64	93	75	119	141	318	344		240	56		1,756	
1963	29	112	128		241	328	343	359				45	1,909	
1964	29	41	41	75	37	33	46		293	212	97	42	2,290	
1965	43	72	103	113	77			200		351	171	57	1,416	
1966	45	32				63.	178	249		339	162	60	1,810	•
1967			33	32	31	43	82	196	243	289	137	42	1,205	
	28	40	58	56	48	38	46	273	355	296	184	77	1,499	
1968	74	38	57	165	282	166	158	232	341	259	167	97	2,036	
1969	39	141	47	45	28	33	77	295	349	300	183	86	1,623	
1970	42	63	47	91	72	72	76	298	342	251	177	119	1,650	
1971	29	50	30	53	54	32	38	176	285	352	322	246		
1972	91	59	42	51	96	90	64	318	322				1,667	
1973	63	36	76	67	91	117	168	278	229	309	268	145	1,855	
1974	29	53	62	106	46	58				128	56	26	1.335	
1975	26	30	47	54	30		84	170	370	349	252	86	1,665	
1976	54	96	139			28	32	178	350	339	257	77	1,448	
1977	57	48		113	84	53	82	257	366	344	269	99	1,956	
(3//	3/	40	47	44	93	136	268	351	343	314	183	104	1,988	
TOTAL	858	1,282	1,232	1,422	1,634	1,742	2,464	4,744	5,930	A 504	2 110	3 505	20 002	
AVERAGE	48	71	68	79	91	97	137	264	329	4,984 277	3,110	1,505	30,907	
					٠.	,,	137	204	329	6//	173	84	1.717	

12491000 RIMROCK LAKE.-- Lat 460 39' 23", long 1210 07' 43", in NE# SW# sec. 31, T. 14 N., R. 14 E., REMARKS.-- Reservoir is formed by earth-fill dam completed in 1925; storage began April 27, 1925.

Usable capacity, 198,000 acre-ft (244 hm³) between elevation 2,766.00 ft (843.077 m), invert of tunnel entrance, and 2,926.00 ft (891.845 m), crest of spillway gates. Figures given herein represent usable contents. Water is used for irrigation.

is used for irrigation.

is used for irrigation.

COOPERATION.-- Records furnished by Bureau of Reclamation and reviewed by Geological Survey.

EXTREMES FOR PERIOD OF RECORD.-- Maximum contents, 201,630 acre-ft (249 hm³) June 18, 1974,
elevation, 2,927.43 ft (892.281 m); minimum observed, 89 acre-ft (0.110 hm³) Oct. 12, 1926, elevation, 2,766.77 ft

EXTREMES FOR CURRENT YEAR.-- Maximum contents, 176,600 acre-ft (218 km³) June 25, 26, 27, elevation, 2,917.20 ft (889.163 m); minimum, 46,360 acre-ft (57.2 km³) Sept. 30, elevation, 2,843.40 ft (866.668 m).

Station 491000 Rimrock Reservoir End-of-Month Contents

100 AF Units

Year	0ct	Nov	Dec	Jan	Feb	Manak							
1960	945	1,058	1,274			March	Apr11	May	<u>June</u>	July	Aug	Sept	
1961				1,347	1,531	1,765	1,877	1,807	1,961	1,422	671	232	15,891
	268	477	597	845	1,229	1,510	1,716	1,823	1,961	1.648	1,026	492	13,592
1962	511	626	805	1,103	1,285	1,423	1,893	1.865	1.990	1.822	1,694	1,049	16,066
1963	984	1,344	1.337	1,307	1,736	1,950	1,982	2,002	1,978	1,889			
1964	375	508	653	842	958	1,020	792	949			1,397	481	18,387
1965	1,113	1,196	1,491	1,554	1,505	1,448			1,622	1,919	1,563	1,069	12,270
1966	495	625	735	824			1,826	1,940	1,952	1,469	759	440	16,693
1967	323				845	923	1,196	1,645	1,777	1,475	794	343	11,677
		431	699	913	1,114	1,256	1,392	1,847	2,002	1,693	1,068	424	13,162
1968	536	777	1,010	1,307	1,765	1,864	1,649	1,686	1.960	1,519	710	370	15,153
1969	518	873	1,055	1,359	1,493	1,583	1,654	1,985	1,972	1,421	766		
1970	326	453	551	761	892	1,103	1,192	1,574	1,988			249	14,928
1971	301	437	594	853	1.230	1,397				1,518	845	326	11,529
1972	1,183	1,302	1,384	1,463	1,407		1,107	1,471	1,985	1,964	1,389	1,085	13,813
1973	1,117	1,230	1,423	1,432		1,462	635	1,312	1,861	1,907	1,406	1.049	16,371
1974	76				1,534	1,604	1,312	1,318	1,327	914	433	. 2	13,646
		284	519	1,124	1,323	1,514	1,440	1,489	2,000	1,960	1,670	1,210	14,609
1975	1,146	1,216	1,355	1,358	1,216	1,287	1,351	1,443	1.982	1,884	1,544	1,247	17,029
1976	1,317	1,427	1,424	1,398	1,483	1,510	1,414	1,772	1.996	1,883			
1977	921	1,016	1,087	1,201	1,298	1,400	1,549	1,622			1,847	1,003	18,474
		•		.,	.,	1,700	1,343	1,022	1,755	1,499	992	466	14,806
TOTALS	12,456	15,280	17,993	20,991	22 044	26 010							
AVERAGE	692	849			23,844	26,019	25,977	29,550	34,069	29,806	20,574	11.537	268,096
ATEINGL	032	049	1,000	1,166	1,325	1,446	1,443	1,642	1,893	1,656	1,143	641	14,894

TABLE 30.--Municipal, industrial, and hydroelectric-power diversions, 1960-77 water years

[Data from U.S. Bureau of Reclamation (written commun., 1978)]

33006 C1	ty of Ya	kima M	& I Div	ersion -	- Oak	Flat Of	version			1 AF L	Ini ts		
Year	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	<u>PuA</u>	<u>Sept</u>	Total
1960	760	560	540	550	500	530	550	660	640	810	770	750	7,620
1961	710	550	510	510	460	480	510	590	680	770	730	740	7,240
1962	720	640	550	580	470 500	550 540	580 540	610 660	660 740	760 760	780 790	760 710	7,660 7,620
1963 1964	700 770	580 660	540 640	5 6 0 650	61D	660	640	730	730	B20	760	780	8,450
1965	800	650	640	640	560	650	660	760	750	750	750	730	8,340
1966	750	640	700	700	640	630	690	770	750	760	790	760	8,580
1967	790 760	710 740	720 740	700 760	610 690	710 740	700 730	760 770	730 700	760 730	740 690	730 600	8,660 8,650
1968 1969	630	690	680	740	670	720	720	750	730	730	730	730	8,520
1970	730	700	720	680	570	740	740	780	760	820	800	720	8,760
1971	700	680	740 730	740 730	710 700	770 - 580	770 730	800 760	780 390	820 360	780 370	710 330	9,000 7,150
1972 1973	750 340	720 330	420	450	430	380	410	420	280	290	300	230	4,280
1974	220	210	300	270	160	250	210	330	410	530	450	370	3,710
1975	310	270	270	290	240	230	240	220 0	200 0	220 0	150 0	30 0	2,670 0
1976 1977	0	0	0	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ
1377	•	•	•		•	-	-	-					
TOTAL	10,440	9,330	9,440		8,520	9,160	9,420 1	0,370	9,930 1		0,380 577	9,680 538	116,910 6,495
AVERAGE	580	518	524	531	473	509	523	576	552	594	3/1	330	0,433
30009 C	ity of Ya	akima M	a :	Naches	Pumpino	Plant				1 AF	<u>Uni ts</u>		
Year	<u>Oct</u>	Hov	<u>Dec</u>	<u>Jan</u>	Feb	Mar	<u>Apr</u>	May	June	<u>July</u>	<u>Aug</u>	Sept	Total
1960	0	0	0	0	Q	0	0	0	0	0	Q	Ò	0
1961	0	ō	0	Ŏ	D	Q	0	ŏ	0	0	0	0	0
1962 1963	0	0	0	0	0	0	0	0	0	ŏ	ŏ	ŏ	ŏ
1964	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	0	0	Ó	Q.	0	0
1965	0	0	Ó	0	0	0	0	0	0	٥	0	0	0
1966	0	0	0	0	0	0	0	0	0	0	0	0	0
1967 1968	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	č	ŏ
1969	0	O	Ó	0	0	0	0	0	0	0	0	a	ō
1970	0	0	0	0	0	0	0	0	0 50	0 210	0 210	0 240	0 710
1971 1972	. 270	210	200	170	200	260	330	410	690	750	810	700	5,000
1973	590	450	420	420	300	390	420	510	670	840	950	790	6,750
1974	670	480	480	540	540 440	470 520	500 470	550 700	400 790	960	- 0 980	640 1,130	5,270 8,100
1975 1976	710 980	560 760	430 730	410 700	650	750	760	960		1.130	1.140	1,180	10,710
1977	1,020	750	700	660	600	660	600	590	600	1,160	1,230	1,020	9,590
70711	4 240	2 210	2 060	2,900	2:730	3,050	3,080	3,720	4,170	5,050	5.320	5,700	46,130
TOTAL AVERAGE	4,240 236	3,210 178	2,960 164	161	152	169	171	207	232	281	296	317	2,563
		.,,											•
10008 1	Bolse-Cas	cade Lo	g Ditch) AF	Units		
<u>Year</u>	<u>Oct</u>	Nov	<u>Dec</u>	<u>Jan</u>	Feb	<u>Mar</u>	<u>Apr</u>	May	June	July	Aug	Sept	Total
1960	920	860	860	770	610	650	830	810	900	520	770	690	9,190
1961	920	860	860	770	610	650	830	810 810	900 900	520 520	770 770	690 690	9,190 9,190
1962 1963	920 920	860 860	860 860	770 770	610 610	650 650	630 830	810	900	520	770	690	9,190
1964	920	860	860	770	610	650	830	810	900	520	770	690	9,190
1965	920	860	860	770	610	650	830	810	900	520	770	690	9,190
1966 1967	920 920	860 860	860 860	770 770	610 610	650 650	830 830	810 810	900 900	520 520	770 770	690 690	9,190 9,190
1967 1968	920 920	860	860	770	610	650	830	810	900	520	770	690	9,190
1969	920	860	860	770	610	650	830	810	900	520	770	690	9,190
1970 1971	920 920	860 860	860 860	770 770	610 610	650 650	830 830	810 810	900 9 00	520 520	770 770	690 690	9,190 9,190
1972	920	860	860	770	610	650	830	810	900	520	770	690	9,190
1973	920	860	860	770	610	650	830	810	900	520	770	690	9,190
1974	920	860	860	770 770	610	650 650	830 830	810 810	900 900	520 520	770 770	690 690	9,190 9,190
1975 1976	920 920	860 860	860 860	770	610 610	650	830	810	900	520	770	690	9,190
1977	920	860	860	770	610	650	830	810	900	520	770	690	9,190
TOTAL AVERAGE	16,560 920	15,480 860	15,480 860	13,860 770	10,980 610	11,700 650	14,940 830	14,580 810	16,200 900	9,360 520	13,860 770	12,420 690	165,420 9,190
HILMOR	. 540	000	0.00		5.0			٠.٠	,				-,

TABLE 30.--Hunicipal, industrial, and hydroelectric-power diversions, 1960-77 water year--Continued

										•			
13002	Roza Powe	<u>r</u>			 .		1 AF U	nits					
Year	<u>Oct</u>	Nov	<u>Dec</u>	Jan	Feb	Mar	Apr	May	June	July	<u>PuA</u>	Sept	Total
1960 1961	53,100 18,900	49,800 0				37,800	61,700	69,100	61,000	61,400	60,800	62,500	685,900
1962	24,500 24,600	200	1,000	40,600	56,200	66,900 23,500	63,900 52,300	57,200	57,000 54,900	54,400 54,700	57,900 58,900	58,700 62,400	502,000 486,400
1963 1964	9,000	0	29,300	21,200	33,300 28,800	30,200 50,400	56,000	EE 200	45 000	40 500	52,900	29,000	426,300
1965 1966	9,000 28,400 36,400	0		36 700	42,200	31 400	62,000	61,800	55,500	52,300	59,000 54,200	55,900 64,400	451,400 488,900
1967	19,400	2,000		3,400 53,000 61,600	31,300 55,300	23,300 5,300	60,100 62,000 48,300 59,500	53,300 59,000	52,500 56,800 51,300	53,800 52,300 60,500 53,400 50,400	54,200 52,700 53,800 53,800	64,400 59,800 48,800 59,800	488,900 413,200 466,800
1968 1969	12,700 22,600	4,000	34,600 23,900	61,600	2.500	47,900 26,800	47,300 59,800	50,700	51,300 46,700	50,400	53,800	59,800	529,400 404,700
1970 1971	22,600 24,700 21,100	12,100	26,200	9 600	2,500 40,000	23,300 5,300 47,900 26,800 26,900 29,600	55,300 61,500	67 PAA	35,200	40.100	55,900 51,700	53,800 57,500 61,700 57,500	443.100
1972 1973	21,100 50,000 56,000 14,800 52,600	8,900 47,200 33,300	16,400 49,100 37,000	60,500	53,900 32,300	29,600 34,400	61,500 62,400		58,700 56,800	44,000 49,500 53,800	52,300 49,900 56,700	61,700	488,500 612,700
1973 1974 1975	56,000 14,800	33,300 27,400	37,000 47,300	48.900	32.400	34,400 8,000 42,400	51,600 52,200	48,900	56,800 53,700	53,800	56,700	45.000	525,300
1975 1976	52,600 47,940	27,400 30,600 40,650	47,300 33,600 62,750	24,200 48,000 65,780	42,100	42,400 38,800	62,400 51,600 62,200 60,300	62,100	50,300 47,600 48,380	50,600 45,000 26,320	49,700 51,800 53,000	58,800 60,300	535,800 572,800
1977	33,440	0.030		03,780		38,450 0	62,140	59,150 66,210	48,380 60,870	26,320 65,250	53,000 55,540	60,500 49,980	572,800 607,250 371,030
TOTAL	550,180	256,150	469,450		637,690	562,050	1,026,080	1,078,060	947,650	921,370	980,540	1,006,380	9,011,480
AVERAGE	30,566	14,231	26,081	31,993	35,427	31 ,225	57,004	59,892	52,647	51 187	54,474	55,910	500,638
31002	Wapatox Po	ower Canal			_		1 AF U	nits					
Year	<u>Oct</u>	Nov	Dec	<u>Jan</u>	Feb	Mar	<u>Apr</u>	May	June	July	Aug	Sept	Tota1
1960 1961	31,900	30,500	29,600	23,300 24,100 21,800 22,000	24,700	23,500	24,000	26,600	31,500	32,500	32,000	29,300	339,400
1962	19,400 20,300 30,100	16,800 15,900 27,400 19,800	16,600 17,300 28,700 23,100	21,800	25,400 23,200	23,500 28,800 21,800	22,000 15,400	25,600 31,000 22,400 28,100	30,400 31,700	32,200 33,200	33,100	32,300 31,600	306,700 292,000
1963 1964	21,800 15,500	19,800	28,700 23,100	22,000 24,700	21,700 23,400	29,900	19,800	22,400	28,900	28,900 32,400	28,800 29,400	31.100	320,300 309,300
1965 1966	15,500 10 200	20,800	21,600	25,500	26,300	30,700	26,600	30,300	30,600 31,400	32,400	32,100	30,700 25,800	309,300 317,600
1967	10,200 20,200 14,500	20,800 18,500 18,500 16,900 23,500 6,900	23,100 21,600 16,700 28,100 19,500 26,300 14,700 21,900	22,000 24,700 25,500 16,300 26,300 24,800 9,800 9,700 22,500 21,500 24,300	23,400 26,300 17,100 25,100	21,800 29,900 30,700 33,800 23,900 27,200 23,600 22,800 26,400	22,000 15,400 19,800 17,600 26,600 23,400 19,400 20,000 20,800 16,500	31,000 27,600 30,400 27,400 25,600	31,400 30,700 30,700 27,800 27,100 27,600	32,100 31,300 31,900 28,400	32,100 31,000 32,200 29,900	28,800	317,600 280,000 308,100
1968 1969	חוור או	23,500	19,500 26,300	24,800 9,800	25,300 13,800 16,900	27,200 23,600	20,000	30,400	27,800	28,400	31,900	27,900	294 600 275 100
1970 1971	13,800 18,300 6,700 11,100	6,900 11.300	14,700 21 900	9,700	16,900	22,800	16,500	25,600	27,600	28,400 27,400 31,700 29,200 26,700 29,300 25,200 24,800 20,850	31,900 30,800 32,000	27,900 28,300 30,900 24,300 25,200	249 100
1972 1973	6.700	11,300 18,400 18,700 21,900	19,000	21,500	22,000 22,500	24,500	12,000		. 25,600 28,100	29,200 26,700	25,000 25,900	24,300 25,200	267,600 259,200
1974	13,100	21,900	26,600	24,300 24,500	18,300 16,200	24,500 22,600 10,100	17,400 26,200	28,700 29,500 28,200	28,200	29,300	27,700	24,500 25,100	274,700
1975 1976 1977	5,900 6,920	U.600	13,300 20,580	24,500 21,900	15,600 13,160	14,500 8,490	13,400 9,600	25,200 26,310	28,100 28,200 27,500 24,700 20,560	24,800	25,000 25,900 27,700 27,500 19,300	19,600	267,600 259,200 274,700 272,100 206,800 196,030
1977	6,920 10,090	19,660 2,960	490	17,750 350	13,700	390	14,600	19,810	18,040	20,820	15,950 26,260	16,230 22,150	196,030 135,590
TOTAL	,286,110 15,895	317,020 17,612	367,170	361,100	350,660	387,980	333,200	489,320	501,600	518,470	510,810	480,780	4,904,220
N. C. C. C.	13,033	17,012	20,398	20,061	19,481	27,554	18,511	27,184	27,867	28,804	28,378	26,710	272,457
	Chandler P	ower and P	umping Cana	ı <u>1</u>			1 AF Un	ıl ts					
Year	<u>0ct</u>	<u>Nov</u>	Dec	<u>Jan</u>	Feb	<u> Har</u>	<u>Apr</u>	Hay	June	July	Aug	Sept '	Total
19 60 1961	5,800 34,500	4,200 1,000	34,200 72,700	2,500 88.400	82,600 82,400	55,000	78,700	80,300	70,100	57,600	61,800	64,300	597,100
1962 1963	34,500 27,500 52,700		58,600	51 ,700	82,400 36,500	6,700	80,100 66,800 67,700	80,600 64,300	73,100 65,400	57,500 58,500	60,700 59,100	61,100 57,400	770,400 552,500
1963 1964 1965	49,000	41,400 67,700 28,900 18,900 86,800	58,600 50,100 86,700	88,400 51,700 48,200 83,500 81,100 90,300	27,900 79,300 79,800	78,300 6,700 56,500 39,400	50,400	69,300 60,500	65,400 54,500 61,200	57,500 58,500 57,500 32,100	59,600 31,100	57,400 62,400 35,500	552,500 647,800 676,400
1966	29,600 19,000	28,900 18,900	53,800 86,800	81 100 90 300	79,800 61,100	39,100 24,700	69,100 64,600	74,300 68,800	70,800 63,400	67,400 63,800	54,500	39,800	688,200
1967 1968	36,900 29,800	86,800 600	93,500 38,200	91,300 91,300 67,200	64,300	41.100	65 500	76,000	72.700	64,700	62,400 61,000	58,600 59,500	682,400 813,300
1969 1970	40,200 33,300	35,800 75,100	80,300	67,200	67,100 76,300 58,500	36,900 44,200 83,100	81,900	62,100 77,900 77,300	58,400 56,200 69,600	49 500 51 800	48,800 61,100	51,100 60,400	813,300 608,300 733,300
1971	72,200	76,900	83,800 79,600	86,600 82,800	58,500 59,300	23.300	64,500 81,900 77,200 76,500	77,300 76,300	69,600 73,500	58,600 65,400	60,100 64,100	60,700	823.900
1972 1973	76,600 46,900	79,500 30,700 77,600	82,800 20,700	83,500 43,000	66,300 40,300	43,300 37,700	76,300 45,400	79,600	73,500 72,400 37,500	68,100	67,400	68,100 64,600	818,000 860,400
1974 1975	64,300 30,200	77,600 56,300	79,600 87,500	18,500	70,700	75,300	65,900	53,400 62,000	58,600 66,600	24,400 57,600	33,900 53,200	41,500 51,100	455,400 735,400
1976 1977	20,020	\$1,650	85,780	88,100 90,900	79,000 82,540	78,600 72,610	76,700 41,270	71,400 42,930	66,600 43,420	61,800 39,030	66,300 40,280	60,900 42,410	823,400 652,840
	21,200	60,430	80,580	48,910	23,330	5,830	1,260	20,460	15,000	17,030	22,420	39,150	355,600
TOTAL Average	689,720 38,318	793,480 44,082	1,255,260 69,737	1,237,810 68,767	1,137,270 63,182	842,640 46,813	1,149,830 63,879	1,197,490 66,527	1,082,420	952,360	967,800	988,560	12,294,640
			•			,013	55,019	90,32/	60,134	52,909	53,767	54,920	683,036

TABLE 31.--Mean monthly irrigation-canal diversions from various streams, 1960-77 water years

[Oata from U.S. Bureau of Reclamation (written commun., 1979) and Wapato Irrigation District (written commun., 1977). Values are rounded to three significant figures or two decimals]

BR	Canal name							Thousa	nds of a	cre-feet				
ation	Canal name	0ct	Nov	Dec	Jan	Feb	Mar	Apr .	May	June	July	Aug	Sept	Total
om Tie	eton River:			·										
001	Tieton Canal	0.04	0.56	0.59	0.05	0.44	0.51	2.93	14.2	19.3	20.8	20.9	17.8	98.1
003 002	Cobb Upper Side Canal	.02 .07	0	0	0	0	<.01 0	.05 .08	.10 .11	.06 .12	.10 .20	.08 .19	.06 .15	.4
001	Sinclair and Cobb Canal Tenant Canal	. 29	.16	.06	Ō	Ō	Ō	.01	.03	.08	. 34	. 44	. 54	1.9
	Totals	.42	.72	.65	.05	.44	.51	3.07	14.44	19.56	21.44	21.61	18.55	101.4
on Na	thes River:													
001	Emerick Canal	.03	.02 80.	.01 .02	0	0	0 .01	.04 .14	.10 .32	.11 .26	.06	.10 .30	.04 .13	1.
002 005	Anderson Canal Nile Ditch Assn. Canal	.06 .33	.12	.07	.04	.03	.06	.29	.48	.60	.76	.81	.61	4.
004 003	Fredericks and Hunting Canal Carmack and Parker Canal	.03	0 .07	0 .05	0 .02	0 .03	0 .04	.11 .10	.15 .22	.15 .22	.11 .13	.13 .15	.10 .11	1.
002	Stevens Canal	. 25	.09	.06	0.02	0	.09	.19	.20	. 30	. 38	.46	. 48	2.
001 001	Naches-Selah Canal	2.61 .44	.04 .02	.27 <.01	.04 <.01	.33 0	.76 <.01	3.38 .31	6.84 .87	7.80 1.46	8.17 1.79	8.24 1.65	6.63 1.19	45. 7.
013	Wapatox Irrigation Canal Foster-Naches Canal	.07	0.02	0	0	ŏ	<.01	.06	.18	.23	. 23	. 14	. 12	- 1.
01 2 01 1	Clark Canal	.09 .57	.04 .27	.03 .21	.02 .12	.01 .33	.02 .53	.14 1,14	.26 3.22	.18 3.76	.17 4.75	.16 4.23	11 2.56	21.
010	South Naches Channel Canal Kelley and Lowry Canal	.15	.09	.02	.01	.01	. 67	.32	1.01	1.43	1.34	1,19	. 58	6.
008 007	Gleed Canal Morrissey Canal	1.61	.36 .03	.23 G	.17 0	.05 0	.23 .03	1.02 .19	2.46 .30	2.93 .26	3.66 .26	2.96 .26	2.01 .20	17 1
006	Congdon Canal	.63	0	ā	Ō	0	.34	1.81	2.47	2.84	3.19	3.04	2.16	16
1005 1004	Chapman and Nelson Canal Naches Cowiche Canal	.41 .27		0	0	0	0 .10	.42 1,22	.69 1.58	.76 1,90	.79 2.34	.81 1.92	.78 1.41	. 4 10
003	City of Yakima Irrigation Canal	.71	Ó	Ö	0	0	.43	1,50	1.73	1.56	1.58	1.58	1.52	10
002 601	Fruitvale Canal Old Union Canal	.62 .61	0 .19	.08	0 .06	0 .03	.10 .25	1.84 .97	2.61 1.72	2.90 1.85	2.89 2.00	2.67 1.87	2.03 1.64	15 11
001	- Totals	9.73	1.42	1.05	.48	.82	3.66	15.19	27.49	31.50	34.85	32.67	24.41	183
om Ya	kima River:			•				-						
001	Roza Canal at 11.0 mile	18.8	0	0	0	0	10.7	33.7	53.6	62.1	68.1	65.3	44.1	356 24
002 007	Sehah-Moxee Canal Moxee Co. Canal	1.31	0	0	0	0	.57 .01	2.46 .47	3.73 .78	4.08 .84	4.60 .93	4.37 .81	3.35 .50	- 4
1006	Hubbard-Granger Canal	.44	Õ	Õ	Ö	Ó	.02	.98	1.76	1.91	2.29	2.17	1,18	10
0005 0004	Union Gap Canal Richartz Canal	.41 .40	0 .30	0 .25	0 .18	0 .11	. 14 . 12	1.75 .52	3.11 .72	3.31 .67	3.68 .78	3.43 .73	2.11 .58	17 5
0003	Blue Slough Canal Totals	.55 22,17	.48 .78	.43 .68	.37	.28	.34 11.90	.56 40.44	.63 64.33	.49 73.40	.54 80.92	.49 77.30	.41 52.23	424
om Al	ntanum Creek:													
02551	Ahtanum Main Canal	.40	<.10	Ō	o o	0	.10	1.20	3.20	3.40	2.60	1.80	1,20	13
)2552	Ahtanum Low Canal Totals	. 10 . 50		0	0	0	< .10 .10	.20 1.40	.40 3.60	.40 3.80	.40 3.00	.20 2.00	.20 1.40	1 15
om Ya	akima River:									-				
0002	Reservation Canal (Old and New)		2.36	2.79	1.55	2.78	11.9 9.17	65.9 46.9	111 71.2	115 73.9	118 77.5	109 76.4	82.3 60.9	644 442
2001 3001	Sunnyside Canal Snipes and Allen Canal	25.8 .39	0	0	0	0	.01	.75	1.44	1.52	1.57	1.72	1.00	-77
	Totals	48.29	2.36	2.79	1.55	2.78	21.08	113,55	183,64	190.42	197.07	187,12	144.20	1094
	oppenish Creek:													
	Toppenish Feeder Canal Satus East Lateral Canal	1.10		.90	0.80	.70 0	.90 .17	2.00 4.88	3.20 7.63	2.70 7.49	1.70 9.04		1.10 5.80	1
26003	Satus 2 Pump Canal	.30	0	Ō	0	.01	.48	4.80	11,50	15.50	21,50	22.30	20.10	9
36004	Satus West Lateral Canal Totals	. 40 3.89		0 .90	.80	0 .70	.04 1.59	.83 12.51	1.30 23.63	1.40 26.09	1.50 33.74	1.60 33.50	1.10 28.10	16
rom S	atus Creek:													
06006	Satus Feeder Canal	0	0	0	a	.01	1,20	8.30	7.50	4.30	.30	0	0	2
oon S	Imcoe Creek:													
06331	Simcoe Creek Canal	.05	0	0	0	0	.05	.50	1.20	.80	.30	.20	.10	
rom Y	akima River:			•										
3001	Kennewick Canal (via Chandler Power Canal)	5,71	0	0	o	0	1.19	11.4	15.1	16.3	17.6	17.1	13.9	9:
2001	Kiona Canal	1.07	0.07	Ō	Ŏ	Ŏ	01,	1.59	2.04	2.00	2.12	2,14	1.82	1
1004	Richland Canal Columbia Canal	2.69 4.29		.04	0	0	.79 .79	5.43 12.7	5.17 14.6	4.41 14.4	4.90 14.1		3.65 11.9	3: 8:
	. Totals	13.76				Ŏ	2.87	31.12	36.91	37.11			31.27	22
									200 20					
	TOTALS	98.81	7.31	6.11	3.43	5.14	42.96	226.08	362,74	386,98	410.34	390.54	300.26	224

 $^{^1}$ Total columns do not necessarily equal sums of monthly values, due to rounding of individual items; "Less than" values < are not included in totals.

TABLE 32.--Records of selected wells

Lithology of principal aquifers: BSLT, basalt; SDGL, sand and gravel; SHLE, shale

<u>Use of Water</u>: C, commercial; D, dewater; F, fire; H, household supply (may include lawn and small garden irrigation)

I, irrigation; N, industrial/commercial; P, public supply (includes some use for fire protection)

S, stock water; U, unused; Z, other

LOCAL NUMBER	OWNER	ALTITUDE OF LAND SURFACE (FEET)	DEPTH OF WELL (FEET)	CASING DIAM- ETER (INCHES)	DEPTH CASED	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
07N/17E-07M01	YAKIMA NATION	3300	350	8	60	175	60
07N/30E-01P01	SIMPSON. ROGER	520	62	6	62		57
07N/30E-01Q01	HOWIE: AL	500	205	6	116	105	116
07N/30E-14401	HOWE 4. DEAN	390	118	16	118		82
03N/15E-28E01	YAKIMA NATION	3500	500	8	18		18
08N/23E-09R	ALEXANDER, GEORGE G	920	1128	10	369	347	
08N/S4E-0SE01	WATKINS. KELLY	670	120	10	18	60	18
10LS0-34S\N80	PROSSER 2. CITY OF	660	760	8	693	471	
09N/24E-08F01	HLEYHL BROS	640	14	36	9,5		480
10H80-345\N80	BLEYHL. CAHL	655	192			186	
08N/24E-10	SHAWVER. A E	659	95	6	. 84	56	84
09N/24E-11G01	TAGGARES: STANLEY	750	217	6	213	90	213
0BN/24E-17G01	ELTERS ESTATE	850	405	ä	258	258	258
10L10-375\M80	DE HIT. R M	645	510	š	360	360	
08N/2BE-02K01	HANSON. HALPH A	>70	65	6	65	300	360
08N/29E-02K02	HANSON+ RALPH A	560	77	12	57		57
08N/28E-05H01	BAUDER. MILO	705	278	iž		360	
08N/28E-07	YAKIMA SHEEP CO		432	6	342	326	220 342
0BN/2BE-12C01	CLAYBROOK, GENE	591	113	6	113	50 50	
09N/28E-14	MAXSON+ DALE	570	106	6	105		
08N/29E-02C01	SHELLCR4FT+ H G	465	110	_			
08N/29E-04F01	ALLEN+ KEN	465	110	6	106		
0BN/29E-04F02	BANKER. EU	550	44	6	83		83
09N/29E-05N01	SCHLATER EVERETT L	- 550	- 65	6	60		60
0BN/29E-17	BRINKLEY HAROLD	600	245	6.	140	136	141
00107 272 - 17	ONTHACET HAROLD	820	352	5	352	1	112
08N/29E-17G01	RIVES. ED	750	121	8	25	17	26
09N/29E-17Q01	TRI-CTY VIEW OR	697	800	10	20	Š	20
09N/30E-06D03	KNW.STEAM LNDHY	350	В7	ā	87	*-	
09N/30E-06L0S	PACIFIC POWER 2	385	555	10	339	330	339
08N/30E-10M02	RENTON CO	360	45	8	3+		34
08N/30E-18C01	LAMPSON. NEIL F	370	37	8	18	39	18
08N/30E-18Q01	BLAIH 2. BEN	495	384	10	66	96	67
08N/30E-19B01	MAYS. KEN	500	100	6	79	70 	79
08N/30E-21E01	CARLTON. HARVEY	360	143	6	143	96	
08N/30E-23	CHEVRON CHEM	350	41	18	58	7 0	28
3M 62-30E/ME	HERRIN. EARL	465	95	6			
0BN/30E-29H01	GHEGG. J C	480	309	8	309	30	744
08N/30E-3UN01	SCHMELZER, ARNOLD	805	575	8	51	30 155	244
09N/J0E-35E01	BROWNEMITCHELL. F. W. 64.P.	940	245		21		51
20911-322/MED	VAN DE GHAAF	697	180	10	166	15 	

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLOGY OF PRINCIPAL AGUIFER	WATER Level (FEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (MOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
D7N/17E-U7M01	USLT. UROKEN	115.80	08/02/1976	215	20	10.0	10.6	
07N/30E-01P01		46.00	11/19/1975	7				н
07N/30E-01Q01	BSLT	39.00	04/15/1976	15				H
07N/30E-14Q01		50.00	02/11/1974	1300	45	4.0	28.9	I
08N/16E-28E01		423.00	08/16/1976					U
08N/23E-09R	BSLT	110.00	04/01/1975	1400	150	5.0	9.3	I
08N/24E-02E01	BSLT	7.00	06/25/1975	25	30	2.0	0.8	н
10LS0-345/MB0	HSLT			1500	72		20.6	ρ
09N/24E-08F01		7.00	1958	300	2		150.0	
08N/24E-08H01	BSLT	0.00	12/ /1969	192	104	7.0	1.8	i
08N/24E-10	BSŁT	60.00	03/18/1974	20	20	1.0	1.0	н
09N/24E-11G01	BSLT	200.00	11/25/1963	20	5	4.0	4.0	H
DBN/24E-17G01	HSLT	189.00	06/28/1969					H+I
08N/27E-01J01	BSLT	250.00	04/ /1974	220	75	4.0	2.9	I
08N/28E-02K01		34.50	10/11/1966	30	1	1.0	30.0	н
08N/28E-02K02	·	29.83	02/29/1968	350	25	3.0	14.3	I
08N/29E-06H01	BSLT	191.00	09/06/1968	400	30	19.0	13.3	I
08N/28E-07	BSLT	274.00	05/07/1952	360	5	3.0	72.0	S
08N/28E-12C01	BSLT	96.58	12/04/1973	14	1	1.0	14.0	н
08N/28E-14		72.33	11/23/1973	30	22	1.0	1.4	н
08N/29E-02C01		89.00	06/ /1943				**	HiN
08N/29E-04F01		76.00	06/16/1975					н
08N/29E-04F02		51.25	04/24/1975	30	3	1.5	10.0	н
08N/29E-05N01	BSLT	140.00	06/01/1963	15	0	1.0	15.0	н
08N/29E-17	BSLT	116.00	04/26/1974	8	209	5.0	0.0	н
08N/29E-17G01	BSLT	77.50	09/07/1973	1				Ħ
09N/29E-17Q01	HSLT	299.00	05/27/1977	500				I
09N/30E-06D03		10.25	04/21/1948					N
09N/30E-06L02	HSL T	45.00	1945	1146	64		17.9	P
08N/30E-10M02		9.42	12/08/1969	123	4	1.3	30.8	H•I
08N/30E-18C01	BSLT	13.58	05/31/1968	105	2	1.5	46.7	H•I
08N/30E-18Q01	BSLT	28.50	04/15/1976	85	241	4.0	0.4	P
09N/30E-19H01		78.50	02/06/1974	14	0	1.0	14.0	. н
09N/30E-21E01	BSLT	5.00	1947					H+5
08N/30E-23		55.08	03/16/1971	1660	5	6.0	321.1	N
08N/30E-29 NE		75.00	05/02/1974	50	0	2.0	20.0	н
09N/30E-29H01	BSLT	168.00	06/16/1977	100		1.0		н
08N/30E-30N01	BSLT	419.00	08/12/1976	4	- -			.н.
08N/30E-35E01	uSLT	77.00	09/03/1968	350	19	4.0	18.4	H•I
09N/22E-11G02		17.00	06/17/1974	315	65	4.0	4.8	S

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	UWNER	ALTITUDE OF LAND SUMFACE (FEET)	DEPTH OF WELL (FEET)	CASING DIAM- ETER (INCHES)	DEPTH CASED	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
09N/23E-02801	HAWORTH. THURMAN E	800	210	A	163	80	163
09N/23E-08D01	COX, CALVIN J	740	140	8	140		98
09N/23E-16L01	BURNS: HARRY J	740	105	6	95		
09N/23E-19D01	OCHOA+ FORTUNATO	645	95	6	90		
10CSS-3ES/N60	GRANDVIEW 4+ CITY OF	820	1632	16	750	305	750
10085-3E2/N60	GRANDVIEW+ CITY OF	770	320	15	102	95	103
09N/23E-23G01	GRANDVIEW 3. CITY OF	805	1150	10	687	676	249
09N/23E-25G01	SCHULTZ. DAVIO	056	118	6	31		. 31
09N/23E-29N01	WANDLING+ HAY	660	73	8	7.3		45
09N/23E-31F	JOHN HAAS+INC.	645	398	12	310	150	310
10H40-345/ME0	SCHINMANN+ ELBERT B	1190	320	16	235	4	235
09N/24E-17A01	TEHMAATEN 2. KENNETH	1002	425	10	200	200	200
09N/24E-26	HCMAHON: A R	799	125	6	28		28
09N/24E-28 NW	HEIERLE, EHEDERICK P	d35	60	6	20	19	20
09N/24E-31C01	PROAM	900	81	6	30		30
09N/25E-06K01	00E+WSU	1080	1200	12.75	1200	700	730
094/25E-10E01	USHR	750	55	6	18	15	18
09N/25E-16D01	MEYER. DARREL	1020	785	8	747	475	747
09N/25E-19801	IHRIG EXP STA	863	533	10	504	503	504
09N/25E-29	O'BRIEN. THOMAS T	700	130	6	125		125
10A0E-365\NE0	BALL+ LENNAVERN	620	715	20	627	35	627
09N/26E-01H01	LETSCH. GEORGE	735	105	8	34	34	34
09N/26E-06P01	HHUETJE. HALPH	1070	705	8	406	404	406
09N/26E-07E01	MOWERY.JK HILGERT	1020	425	8	20	10	20
09N/26E-11G01	HARKER: FREU	630	305	8	45	3	45
09N/26E-12R01	PARK+ S U	605	150	6	70	70	70
09N/26E-17P01	MCCALL. DUNALD	550	200	6	20	Ō	20
09N/26E-20A01	PERRAULT. ESTHER	764	524	6	520	296	159
09N/27E-02C01	DEACY+ NICHOLAS J	553	195	8	76	70	78
09N/27E-02C02	MAYOVSKY. DWAINE	544	255	8	60	55	60
09N/27E-02C03	BRADLEY. LEONARD	135	315	6	58	58	58
10LSU-37S\NPO	MACKAYAMCOONALD	540	94	6	94	62	
09N/27E-03J01	SLIPPO. BARRY	520	360	8	93	3	93
09N/27E-05A01	UNKNOWN	800	600	6	360	325	360
09N/27E-07	CLINE+ TOM	589	30	6	30		
09N/27E-09K01	OLIVER. FRANKLIN B	710	447	10	33	291	34
09N/27E-17H01	STUCKLER KENNETH	685	300	6	66	64	66
09N/27E-17N01	AXTMAN. DARL	685	155	6	18	18	18
09N/27E-18G01	YOHNER. UENNIS	481	47	6	47		
1081S-312/N60	HARRISON: TEU	740	585	8	19	127	19

TABLE 32.--Records of selected wells--Continued

LDCAL NUMBER	LITHULUGY OF Principal aguifer	WATER LEVEL (FEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAH- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
	<u> </u>							
						2.0		
09N\S3E-05R0J	USLT	80.00	01/22/1968	15	12 10	2.0	1.3 6.0	н
09N/23E-08001		4.00	03/20/1954 01/17/1975	60 28	30	4.0	0.7	
09N/23E-16L01		11.00 20.00	02/19/1976	20	20	5.0	1.0	H
09N/23E-22J01	HSLT	173.00	12/01/1948	400	270	4.0	1.5	P
0441536-55301	HOLI	113.00	12/01/1740	400	2.0	4.0		•
09N/23E-22N01	BSLT	29.50	01/23/1976	155	228	5.5	0.7	Р
09N/23E-23G01	BSLT	127.00	05/ /1944	900	70		12.9	P
09N/23E-25G01	BSLT	11.00	01/02/1976	30	10	1.5	3.0	H
09N/23E-29N01		10.00	05/ /1953	310	0		310.0	
09N/23E-31F	8SLT	34.00	06/22/1977	350		4.5		I
				1500			27.0	
09N/24E-04H01	BSLT	135.00	08/22/1977	1500	54 54	8.0	27.8	I I
09N/24E-17A01	BSLT	17.00	07/05/1974 06/15/1974	200 36	20	4.0 1.0	3.7 1.8	H
09N/24E-26		28.00			15	1.0	3.2	Ä
09N/S4E-58 NM	BSLT	3.00	08/03/1974 04/20/1975	48 30			J. E	H
09N/24E-31C01		19.00	04/20/19/5	30				п
09N/25E-06K01	BSLT	532.00	07/16/1977	1500 .	26	6.5	57.7	I
09N/25E-10E01	BSLT	5.00	06/11/1957	75	7	1.5	11.4	н
09N/25E-16001	BSLT	375.00	05/20/1977	500				I
09N/25E-19B01	BSLT	218.00	04/20/1954	150	128		1.2	
09N/25E-29		95.00	11/03/1971	15	12	1.5	1.3	н
	20		04/16/1977					I
10A025E-30A01	BSLT BSLT	12.00	01/07/1976	100				H
09N/26E+01M01 09N/26E+06P01	USLT	499.00	03/15/1977	600				ï
09N/26E-07E01	BSLT	99.00	04/03/1977	50				Ĥ
09N/26E-07E01	BSLT	102.50	09/10/1977	100		'		H
U9N/28E-11601	BJEI	102430	0971071711	100				,,
09N/26E-12R01	BSLT	59.00	09/12/1974	100				H
09N/26E-17P01	₿SLT	79.00	09/13/1974	15				H
09N/26E-20A01	8SLT	250.00	03/11/1966	9				Z
09N/27E-02C01	BSLT	142.00	06/25/1975	36			••	H.I
09N/27E-02C03	BSLT	140.00	01/10/1976	300				H+I
09N/27E-02C03	BSLT	134.00	09/21/1976	60				н
10L25-127V60	BSLT	63.00	12/ /1974	20	7	1.0	2.9	Ĥ
09N/27E-03J01	BSLT	279.00	06/19/1977	25		4.0		H
09N/27E-05A01	BSLT	350.00	06/03/1976	30				н
09N/27E-07		7.00	04/19/1974	30	. 8	4.0	3.8	н
		212.52						
09N/27E-09K01	BSLT	218.50	05/ /1975					H.I
09N/27E-17H01	BSLT	149.00	03/15/1977	25 25				H
09N/27E-17N01 09N/27E-18G01	BSLT	79.00 3.00	09/16/1974 09/21/1974	60				H
	BSLT			300				H
09N/27E-21B01	Dafi	409.00	03/19/1977	300				n

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	OWNER	ALTITUDE OF LAND SURFACE (FEET)	DEPTH OF WELL (FEET)	CASING DIAM- ETER (INCHES)	DEPTH CASED	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
09N/27E-21Q01	POTTETE. E K	686	490	6	456	1	54
09N/27E-29D01	HOUSLEY. JUANITA W	607	183	ě	182		- -
09N/27E-36D01	SIME. JAMES A	669	238	6	232	+-	232
09N/27E-36H01	ONR	660	400	16	300	290	300
09N/28E-04F03	EVERETT. G M	370	51	42			
09N/28E-04G01	SEIGEL+ QUENTIN	377	314	6	180	178	180
09N/28E-05C01	WEST RICHLAND, CITY OF	385	572	12	200	340	77
09N/28E-06A02	MOLLER. RAY	412	90	• 6	76		76
09N/28E-07	BENTON CO	630	19	8	18		
09N/2BE-10G02	U S GOVT	403	178	20	178	84	145
					2.0		• • • •
09N/28E-10H01	U S GOVT	357	129	12	126	36	33
09N/28E-11Q01	U S GOVT	355	155	12	100	138	70
09N/28E-14_SW	ACME CONCRETE	340	65	8	48		48
09N/28E-15E01	BIBLE WAY	350	305	6	305	111	225
09N/28E-15N01	TYLER. DORE E	510	188			104	
09N/28E-17H01	DAVIN LNO&LVS 1	590	488	9	156	293	156
09N/2BE-20E01	DAVIN LND&LVS 2	780	707	8	189	291	189
09N/28E-23R01	CLEAVENGER. WILLIAM J	355	345	6	20	- 6	20
09N/29E-26N01	STALLINGS. ROBERT	570	325	5	316	173	169
09N/28E-35Q01	WALKUP. PAUL C	900	230	5	211	5	211
09N/29E-30F01	OLSEN. WAREN	346	90	6	76		76
09N/29E-36N01	WA ST HWY	380	50	ē	45		45
LSS-341/NO1	ADRIAN	4600	248	6	248		
10N/16E-03N	RAMSEY. KIP	1175	494	Š	180	85	180
10M/16E-10J01	BRISBOIS. RAY	1140	98	6	98		
10N/16E-11J	AMBROSE. PHILLIP	2000	119	. 6	113		113
10N/16E-15M01	KUNEKI, LEONARD	1290	125	6	40	44	40
10N/16E-15N01	MCLAVEY. LEROY	1290	310	ě	58	30	58
10N/16E-19G01	FORT SINCOE JC	1550	425			34	300
10N/16E-51D0S	FORT SIMCOE	2800	158	10	158		45
10N/16E-23D02	LAWRENCE, CAROL	1180	131	6	84	84	84
10N/16E-S4F01	WA.CONSTRUCTION	1160	216	6	117	130	118
10N/17E-02F01	MCKAY, ROSEMARY	880	120	ě	120		
10N/17E-05M03	NP RR	965	757	6	602	705	603
10N/17E-05N01	WHITE SWAN SCHL	977	18	60	18		
10N/17E-06D01	BOISE CASCADE	1000	242	6	182	223	
10N/17E-07R01	SMARTLOWIT: JOHN	1030	65	6	65		
10N/17E-15H01	ANDY+ AMOS	950	110	6	105		
10N/17E-17L01	SUNDOWN # RANCH	1040	537	ě		512	
10N/17E-19E01	LAMB. ELMER&YVON	1040	343	6	155	150	155

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHDLOGY OF PRINCIPAL AQUIFER	WATER LEVEL (FEET)	DATE WATER LEVEL MEASURED	OISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF Water
09N/27E-21901	HSLT	325.00	03/14/1975	43				н
09N/27E-29D01		168.00	04/04/1974	20	0	4.0	20.0	H
09N/27E-36D01		187.00	03/08/1963	183	10	3.0	18.3	н
10HaE-375\NF0	BSLT	173.00	06/11/1973	1200	367	24.0	3.3	I
09N/28E-04F03	·	10.50	05/09/1960	.60	S		30.0	
09N/28E-04G01	USLT	10.67	11/28/1966	30	154	1.0	0.2	H.I
09N/28E-05C01	HSLT	H.00	01/08/1957	697	+ 0		17.4	Ρ
09N/28E-06A02		66.58	06/14/1966	30				H+I
09N/28E-07		11.71	06/14/1974	90				1
09N/2BE-10G02	 .	43.31	01/11/1945	500				P
09N/2BE-10H01		6.15	06/13/1943	350	82	21.0	4.3	U
09N/2BE-11U01	#SLT	14.18	05/31/1943					
09N/28E-14 SW		17.63	10/16/1974	115	26	4.0	4.4	N+H
09N/28E+15E01	#SLT			400				I
09N/2AE-15N01	BSLT	124.00	04/19/1963	40	39	5.0	1.0	H • I • S
09N/28E-17H01	BSLT	213.00	02/28/1976	5	20	4.0	0.3	н
09N/28E-20E01	BSLT	239.00	05/21/1976	5	2	4.0	2.5	· н
09N/29E-23R01	BSLT	199.00	07/10/1977	35				н
09N/28E-26N01	⊎SLT	163.00	06/18/1975	17	67	1.5	0.3	н
09N/2BE-35001	HSLT	159.00	10/23/1972	8	55	1.5	0.1	н
09N/29E-30F01	. 	24.50	11/07/1975	37	45	1.0	0.8	H
09N/29E-36N01	- -	24.00	04/01/1974					1
10N/14E-SS7		70.00	07/28/1975	25	30	1.0	0.8	н
10N/16E-03N	HSLT	360.00	07/23/1977	100	129	1.0	0.8	н
10N/16E-10J01	,			10				н
10N/15E-11J		18.67	09/28/1973	15	39	2.5	0.4	н
10N/16E-15M01	BSLT	67.00	04/ /1972	15		4.0		Ħ
10N/16E-15N01	BSLT	65.00	12/10/1954	240	119	3.0	2.0	I
10N/16E-19G01	BSLT.FRACTURED	26.00	07/ /1967	60	35	52.0	1.9	H
10N/16E-51005		42.00		. 250		5.0		Z
10N/16E-23D0S	BSLT .			10				U
10N/16E-24F01	SLT.FRACTURED	47.62	10/18/1972	60				н
10N/17E-02F01				10				н
10N/17E-05M03	R2f 1	15.00						
10N/17E-05N01		8.00	05/ /1970	500				F
10N/17E-06D01	BSLT	32.00	07/ /1970	80				H
10N/17E-07R01		24.00	04/ /1972	21	25	4.0	0.8	н
10N/17E-15M01				10				, U
10N/17E-17L01	BSLT				544			H+I
10N/17E-19E01	#SLT	54.00	06/15/1974	150	266	1.0	0.5	н

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	OWNER .	ALTITUDE OF LAND SURFACE (FEET)	DEPTH OF WELL (FEET)	CASING OIAM- ETER (INCHES)	DEPTH CASED	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
10N/17E-20A01	WEASELTAIL, MARTHA	1010	43	6	43		
10N/17E-23L01	DEKKER 2. HERT C	980.0	700	12	456	324	215
10N/17E-26R01	DEKKER 3. HERT C	1015	1000	6	956	405	510
10N/17E-28B01	DEKKER 4, BERT C	1045	860	12	160	135	160
10N/17E-35801	SHELLENBERGER 1. NORMAN	1110.0	705	10	398	240	398
10N/17E-35802	SHELLENBERGER 3. NORMAN	1109	803	20		803	320
10N/17E-36A01	ARQUETTE: LOUIS	1024.0	310	ĩo		260	260
10N/19E-01D01	PEUGH S. MAURICE	815	112	iŏ	108		15
10N/18E-06R03	LOGIE: MINA .	825	50	6	50		
10N/18E-09M02	AFTERBUFFALO. LORRAINE	2400	61	6	76		76
10N/18E-23A01	OLNEY	790	41				
10N/18E-23F01	SOCKZEHIGH. O	788	42	6	42		
10N/18E-24A01	WOLF: MARIE	776	63	6	63		
10N/18E-31N01	DEKKER 7. BEHT C	1136	1044	8	610	603	610
10N/19E-12R02	MAMPAT. CHESTER	767	61	6	61		
10N/19E-14C01	WESLEY+ ALEX	777	71	6	71		
10N/19E-22R01	HUBBARD. CARL	759	68	6	68		
10N/19E-24A01	FRANK, JIM	757	50	6	50		
10N/19E-3UR01	DNEIL VIOLA	788	715	10			535
10N/20E-01K01	JACK+ LOUIS	735	50	6	50		
10N/20E-04J01	TOPPENISH 5. CITY OF	764.0	291	8	291		55
10N/20E-09A01	TOPPENISH 6, CITY OF	757.0	863	24	783		803
10N/20E-19J01	SCHNEIDER. E w	743	60	6	50		
10N/20E-19001	SCHNEIDER, E W	745	50	6	20		
10N/20E-25P01	GEORGE + ENRICH	718	59	6	59		
10N/20E-26F01	SHUSTER: ALLISON	725	40				
10N/20E-29G01	JENSEN. STANLEY	738	65	6	65		
104/20E-34F01	ANNHOF +WIF	735	41	6	41		
10N/20E-35F01	BENT BARREL GUN	718	120	6			
10N/20E-36G01	UMTUCH+ MARY	718	40	6	40		
10N/20E-36G02	UMTUCH+ MARY	718	48	6	43		43
10N/21E-03H	DUIM. GARRETT W	905	775	14	724	722	724
10N/21E-04E01	MHITE+ JIM	830	144	6	145		
10N/51E-08H01	₩ILSON: GENALD H	780	192	6	190		
10N/21E-13R01	BREWER. NIKKI R	780	100	6	105		
10N/21E-21H01	GRANGER. TOWN OF	731	220	a	180		64
10N/22E-12F01	HOSTETLEH 2. MONT J	430	200	6	200		
10N/22E-15C01	PAUL, CHARLES R	855	185	6	185		
10N/22E-17C01	CHINN: JAMES	83 0	56	6	50		51
10N/22E+27J	MOSS. ALLEN L	760	127	6	127		

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER		OLOGY OF Pal adulfer	MATER LEVEL (FEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
10H/17E-20A01					10				н
10N/17E-23L01	BSLT		95.00	1955	1600	45	4 • D	35.6	ī
10N/17E-26R01	BSLT		100.00	01/13/1958	919	6		153.2	ī
10N/17E-28H01	HSLT		105.00	01/ /1958	1800	515		8.5	1
10N/17E-35801	HSLT		169.00	04/ /1958	872	15	4.0	58.1	U
10N/17E-35802	#SLT		246.90	06/ /1970	1700	4	4.0	425.0	1
10N/17E-36A01	⊎SLT		108.00	04/03/1954	200	155		1.3	U
10N/18E-01D01			15.00	04/15/1971	800				I
10N/18E-06R03			36.00	09/ /1963	10				н
10N/18E-09M02			36.00	05/01/1975	35		1.2		н
10N/19E-23A01		 .	8.50	05/04/1971			. 		н
10N/18E-23F01			16.00	09/ /1971	12				н
10N/18E-24A01			8.00	02/ /1967	10	17	1.0	0.6	H
10N/18E-31N01	8SLT		233.00	08/ /1963	388	33		11.8	I
10N/19E-12R02			10.00	02/ /1967	10	16	1.0	0.6	н
10N/19E-14C01			14.00	02/ /1967	10	. a	1.0	1.3	н
10N/19E-22R01			7.00	02/ /1967	10	33		0.3	H
10N/19E-24A01			8.50	06/26/1975	40	3.	0.5	13.3	H
10N/19E-30R01			6.00+	04/ /1972	440				H.
10N/20E-01K01		~~	12.00	10/ /1965	10	10	1.0	1.0	H
10N/20E-04J01			17.00	12/ /1951	1070	60		17.6	P
10N/20E-09A01			27.72+	12/ /1959	2000		10.0		P
100/205-19J01			11.00	02/ /1966	10	13	1.0	0.8	н
10N/20E-19001	•								H
10N/20E-25P01 _.			12.00	02/ /1966		·			H
10N/20E-26F01					40				н
10N/20E-29G0L			10.00	02/ /1966	10	8	1.0	1.3	н
10N/20E-34F01			11.00	09/ /1963	40	9		4.4	н
10N/20E-35F01			5.51	10/14/1971					H
10N/20E-36G01			3.00	'					н
10N/20E-36G02			6.67	07/24/1973					H
10N/21E-03H	BSLT		69.00	05/02/1977					1
10N/21E-04E01			65.00	10/13/1975	25	10	1.0	2.5	
10N/21E-08H01			70.00	03/18/1975	24	5	1.0	4.8	H
10N/21E-13R01			21.00	10/14/1975	50	. 5	5.0	4.0	н
10N/21E-21H01			35.00	08/ /1973	175	45	4.0	3.9	P.
10N/22E-12F01			65.00	01/28/1976	30	10	4.0	3.0	i
10N/22E-15C01			55.00	47.404.41073	20	15	1.0	1.3	H
10N/22E-17C01			6.67	07/26/1973	15	1	1.0	12.8	H
10N/22E-27J			50.00	04/18/1965	14	12		1.2	н

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	Owner	ALTITUDE OF LAND SURFACE (FEET)	DEPTH OF WELL (FEET)	CASING DIAM- ETER (INCHES)	DEPTH CASED	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
10N/22E-30E01	UNR.SNIPES MTN.	274	205			244	
10N/22E-34Q	NEWHOUSE. ALFRED	826 895	885 440	12	771	766	771
10N/22E-3401	UPLAND WINERY	840	267	10 5	330 340	320	330 308
10W/22E-36E01	SUNNYSIDE 7. PORT DIST	720	1057	12	1026	818	300 887
10N/23E+03A01	ANDERSON+ RICHARD	1300	530	6	166	145	168
10N/23E-14H	SUNNYSD.LND.GRP	1106	700		201		201
10N/23E-17A	· · · · · · · · · · · · · · · · · ·	1190	700	10	291	635	291
10N/23E-21G01	STOUT• HUD KILLIAN• FREDERICK	950 850	1182 135	14	432	755	432
10N/23E-250	MARTIN. ROBERT J			. 6	134		
10N/23E-26R01	USBR	1085	310	10	310	15	530
1007236-20001	0 3 6 4	1024	106	6	4		4
10N/23E-27C01	MILLER 4+ DONALD D	925	60	6	60		
10N/23E-32K01	SHACKLEY	738	155	6	149		149
10N/23E-34R	TIHMONS, BILL	936	320	16	220	50	550
10N/23E-35P	PITTILLO. ARTHUR L	970	492	12	227	200	227
10N/23E-35R	BROWN FRT	960	817	16	520	575	520
10N/23E-36A	EVANS. BILL	1210	1320			485	
10N/24E-31A01	STRICKLAND, DAVID	1260	660	8	30	375	30
10N/24E-31F01	MCPHERSON 2. JAMES	1180	359	10	304	4	304
10N/24E-31G01	CONDIFF, RICHARD E	1180	405	8	20	350	20
10N/25E-25001,	NAKAMURA 2. HISASHI	1293	821	10	150	320	150
10N/25E-25N02	NAKAMURA 1. HISASHI	1446	629	10	387	360	387
10N/26E-25N01	IMMELE: ROBERT	¥00	340	8	20	3	20
10N/26E-28R02	SCHWENDIG: HARVEY	1100	135	6	19	6	19
10N/26E-32J01	USBR	960	144	6	129		130
10N/26E-33D01	CHAMPION ORCHRD	1235	838	12	520	830	380
10N/27E-04Q01	U S GOVT	423	33	12	35		14
10N/27E-11P01	JOHNSON, WILFRID E	503	74	10	69		69
10N/27E-14L02	MYERS, ED	428	60	6	55		55
10N/27E-14P01	MITCHELL+ EDWARD A	398	111	12	59	59	45
10N/27E-23L01	BRUCE, KAYE	530	40	8	40		
10N/27E-26L01	MACKAY&MCDONALD	368	150	6	98		98
10N/27E-29R01	RUPPERT, BERNARD L	502	226	6	36	36	36
10N/27E-30L01	RICE, L H	556	116	10	116		
10N/27E-31R01	HAMILTON: JACK	600	42	8	32		
10N/27E-32M01	SICOTTE, OMER	550	240	6	39	18	.39
10N/27E-34H01	BUSCH+ RAYMOND	560	326	10	52	52	52
10N/28E-11D03	U \$ 60VT	390	85	10	65		50
10N/28E-17B01	U S GOVT .	460	228	8	225		93
10N/2BE-20N01	NELSON, LYMAN	710	35	8	35		16
10N/28E-22J01	U S GOVT	404	89	20	90		55

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLOGY OF Principal adulfer	WATER LEVEL (FEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
10N/22E-30E01	USLT	29.08	06/02/1975	1450	36		39.9	1
10N/22E-34Q	HSLT	130.00	03/28/1977	30	0		30.0	I
10N/22E-34R01		138.00	05/ /1944					
10N/22E-36E01	BSLT	9.24+	03/13/1974	458	300	8.0	1.5	P
10N/23E-03A01	BSLT	393.00	02/10/1975	12	10	1.0	1.2	н
10N/23E-14H	BSLT	140.00						I
10N/23E-178	BSLT			2052		5.0	5.8	I
10N/23E-21G01		1.00	06/10/1975	15	50	5.0	0.3	H
10N/23E-25D	HSLT	63.50	05/10/1977	'				I
10N/23E-26R01		20.00	10/ /1950	13	42		0.3	н
10N/23E-27C01		F	09/18/1956	5 F				
10N/23E-32K01		35.00	12/09/1974	20	30	1.0	0.7	
10N/23E-34R	BSLT	60.00	05/02/1977	500				I
10N/23E-35P	USLT	103.00	04/01/1977	300				I
10N/23E-35R	BSLT	166.00	03/27/1977				 .	I
10N/23E-364	BSLT	580.00	04/10/1977			·		I
10N/24E-31A01	BSLT			5				н
10N/24E-31F01	HSLT	211.00	08/15/1977	912	0	4.0	912.0	I
10N/24E-31G01	BSLT	139.00	04/16/1977	35				н
10N/25E-25D01	USLT							U
10N/25E-25N02	HSLT	250.00	02/10/1972	40				1
10N/26E-25N01	BSLT	149.00	02/25/1976	50				н
10N/25E-28R02	HSLT	59.00	09/18/1974	80				н
10N/26E-32J01		87.00	08/11/1950	25	22	'	1.1	1H
10N/26E-33D01	HSLT	449.00	05/20/1977	750	0	24.0	750.0	1
10N/27E-04Q01		9.00	06/16/1944	140	12	7.0	11.5	
10N/27E-11P01		47.50	09/23/1971	90	10	5.0	9.0	H • I
10N/27E-14L02		40.50	03/05/1976	25	3	1.0	10.0	н
10N/27E-14P01	BSLT	35.00	05/24/1948	210	100	4.0	2.1	I
10N/27E-23L01		15.00	09/26/1975	100	20	1.5	5.0	I
10N/27E-26L01		35.00	07/ /1971	30		6.0		н
10N/27E-29R01	BSLT	180.00	03/15/1951	300				н
10N/27E-30L01		15.00	10/15/1965	50	98	4.0	0.5	H
10N/27E-31R01		0.00	U8/26/1974	250	5	4.0	50.0	Ī
10N/27E-32M01	BSLT	49.00	04/21/1976	60				н
10N/27E-34M01	asit .	175.00	11/06/1974	605	18	5.0	33.6	I
10N/29E-11D03		44.97	08/18/1943	250	0	8.8	250.0	
10N/28E-17801		83.57	09/26/1951					
10N/28E-20N01		10.00	uS/ /1973	100	0	0.5	100.0	H = I
100/385-383/001		54.18	03/29/1944	140	25	1.0	6.4	

TABLE 32.--Records of selected wells--Continued

		ALTITUDE		CASING		DEPTH	DEPTH TO
		OF LAND	DEPTH	DIAM-		TO	FIRST
1.0041 41111050		SURFACE	OF WELL	ETER	DEPTH	AQUIFER	OPENING
LOCAL NUMBER	OWNER	(FEET)	(FEET)	(INCHES)	CASED	(FEET)	(FEET)
10N/28E-23L01	U S GOVT	40%	131	12	131	28	55
10N/28E-26F01	RICHLAND. CITY OF	370	40	50	24		
10N/28E-27D01	U S GOVT	367	100	6	93		25 55
10N/28E-31J01	PATTERSON+ LYNN	530	34	6	34		
10M/28E+31M01	GLENN+ CHARLES E	422	146	8	109	99	30 109
10N/28E-33P01	RICHARDS+ ALFRED C	390	21 u	6	210	190	
10N/28E-34	PRIDE PAK FOS	363	37	16	24	7-0	
10N/28E-34R01	NELSON, JACK L	362	12	36	12		24 8
10N/28E+35002	U S GOVT	369	150	10	95		24
10N/28E-35J01	U S GNVT	376	18	6	75		54
		5.5	••	•	,,		24
10N/28E-36E01	HEWITT: G #	340	121	6	118		
11%/16E-01A01	WHITE SWAN. FAIRGRNDS	1520	193	6	180		180
11M/16E-17E01	DANIELS. C	1530	142	ŏ		13	400
11N/16E-25N01	HUBHARD. JIM	1100	72	6	67		
11N/16E-25Q01	PACE 4. W H	1100	1100	6	1014	742	600
11N/16E-34K02	GOUDY. ALBERT	1190	457	5	150	21	
11N/17E-01A01	WILCOX+ HUBERT H	1137	1000	Ā	591	590	591
11N/17E-01Q01	WARVICK - MARTIN	983	160	6	118		118
11N/17E-12J01	WHEELER. DUANE	945	87	6	82		92
11N/17E-17P01	STEPHENSON 3. CAH	1062	995	20	330	331	330
11N/17E-20F01	ST HILAIRE, TIM	1070	725	10	641	398	402
11N/17E+21C01	ST HILAIHE. TIM	1009	670	io	513	510	402
11N/17E-24D01	CALIHAN	878	2760	20	7.2	7.0	
11N/17E-27Q01	MOSES. NETTIE	871	110	6	40		
11N/17E-30Q01	PACE 3+ W 6	1020	855	8	804	531	747
11N/17E-31L01	MILLER, JOE	201					•
11N/17E-32L02	LEWIS+ MICHAEL	990	75	6	75		
11N/17E-33A01	WATLAMATT, ANTON	942	197	4	192		145
11N/18E-01N01	CANAPOD. JAMES	885	48	6	48		
11N/18E-08R01	CLEVELAND, NATTIE	889	98	6	93		93
	erreterator Mail IE	880	83	6	78		
11N/18E-10E01	SPEEDIS. ESTHER	900	75	6	59		
11N/18E-17801	HERT+ CONHAD	880	625	6	212	212	212
11N/18E-18P01	PALMER. CARROLL	861	157	6	152		152
11N/18E-33D01	HENRY. GEORGE	810	54	6	54		
11N/18E-34P01	ST MARX. CHARLES P	#12	512	8			
11N/18E-35N01	HAWK. EVA	817	64	6	64		
11N/19E-01E01	MCDONALD. DANIEL A	849	18				
11N/19E-09J01	JIM. ROSE	866	40	6	35		35
11N/19E-19C01	OLNEY. DOUG	852	82	6	77		77
11N/19E-22A04	SHIKE. JAMES	ė37	51	6	51		

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLOGY OF PRINCIPAL AQUIFER	WATER LEVEL (FLET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
10N/28E-23L01		48.27	11/10/1944	1125	5	16.0	247.3	
10N/28E-26F01		12.00	11/29/1961	930	16		58.1	P
10N/28E-27D01		7.85	09/09/1944					U
10N/28E-31J01		6.00	05/09/1975					н
10N/28E-31M01	BSLT	48.00	1954	90	90		1.0	
								H•I
10N/28E-33P01	#SLT	19.67	07/05/1974	175	11	2.5	15.9	N
10N/28E-34			04/ /1971	200		a.0	100.0	ï
10N/28E-34R01		9.00		985		5.0	246.3	
10N/28E-35D02						8.0		
10N/28E-35J01		36.00	05/15/1944	178		0.0		
10N/28E-36E01		26.00	1957	25	48		0.5	
11N/16E-01A01	BSLT	33.00	05/01/1975	35				н
11N/16E-17E01	BSLT	F	09/28/1972	10 F				н
11N/16E-25N01		48.70	04/26/1971	10				H
11N/16E-25Q01	HSLT	242.85	05/14/1970	100	126	1.5	0.8	1
11N/16E-34K02	BSLT	346.00	08/ /1972	15				I
11N/17E-01A01	BSLT	210.00	1960	1500	41		36.6	Ī
11N/17E-01901		30.00	03/ /1961	30				н
11N/17E-12J01		13.75	10/21/1973	8	70	1.5	0.1	н
11N/17E-17P01	BSLT	161.50	1963					Ţ
11N/17E-20F01	8SLT	195.00	03/ /1967	2000	19		105.3	1
11N/17E-21C01	SDGL	65.00	09/ /1955	850	52	9.0	16.3	1
11N/17E-24D01		F		1200				ū
11N/17E-27Q01		14.00	03/ /1963	40	46	1.0	0.9	H
11N/17E-30Q01	BSLT	128.00	04/ /1965	5000				1
1147175-30001	B3E1	120.00	04, ,1,03	3000				
11N/17E-31L01				10				н
11N/17E-32L02		15.00	04/ /1972	15	17	4.0	0.9	Н
11M/17E-33A01				10				н
11N/18E-01N01		17.50	05/01/1975	15		1.2		н
11N/18E-08R01		32.00	12/ /1965	10	10	••	1.0	н
11N/18E-10E01		11.00	1962	10	18	1.0	0.6	н
11N/18E-17B01	SDGL	f		`500 F				н
11N/18E-18P01	**	19.00	05/01/1975	15			,	н
11N/18E-33D02		25.00	1963	12			'	H
11N/18E-34P02								I
11N/10E-35N01		17.00	04/ /1967	10				н
11N/19E-01E01		8.00	1962	300	6		54.5	
11N/19E-09J01		5.00	08/02/1973	15	. ī	1.0	15.0	н
11N/19E-19C01		18.33	12/04/1973	15	· ī	1.0	15.0	н
11N/19E-22A04		10102		10		1.0		H
4 1444 T 1P - F C M A A								

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	OWNER	ALTITUDE OF LAND SURFACE (FEET)	DEPTH OF WELL (FEET)	CASING DIAM- ETER (INCHES)	DEPTH CASED	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
11N/19E-35N02	U&I SUGAR	804	100	6	100		55
11N/20E-02H01	EVERTSEWALSH: JOHNSOON	1240	666	5	675	450	420
11N/20E-05R	BABCOCK, GREEN &	1020	625	10	505	475	505
11N/20E-11J	NARDUZZI+ ERMANNO	1080	650	12	533	530	533
11N/20E-130	WELCH. WAYNE	1120	940	6	940	910	
11N/20E-14N01	CARLSON: HUGH A	920	184	5	184		
11N/20E-22R01	BARBEE 1+ LES	835	528	10	232		222
11M/20E-22R02	DAVIES. BILL	830·	145	6	141		232 142
11N/20E-24D01	RUSSELL. LAWRENCE R	920	160	6	153		153
11N/20E-31E01	MILLER, MELVIN	790	50	6	50		133
				·	50		
11N/20E-36B02	LUDWIG	820	260				
11N/21E-01R02	SPAULDING 5. E E	1940	707	6	308	356	309
11N/21E-07C01	DE NIKE, DUNALD M	1380	345	ě	276	270	276
11N/21E-18R01	LEACH+MILLER &	1090	575	12	468	390	468
11N/21E-20A02	J.J.&G.INVESTMT	1190	795	10	706	748	707
11N/21E-20D02	BALDWIN. JOHN	1130	1026	8.63	936	910	936
11N/21E-21J		1200	605	14	453	170	453
11N/21E-22K	BEST. PETER C	1228	1087	6	822		562
11N/21E-32C01	GRENZ. HAROLU	885	158	6	158		
11N/21E-36D	SLAVICK. FRANK	1040	404	8	400	400	400
11N/23E-26K	PATTLESNAKE RCH	1275	1166	20	620	602	620
11N/22E-29B	VAN GATTI. DWAIN	1390	884	6	762	827	312
11N/22E-29N01	V S B R	1140	408	6	396		396
11N/2ZE-34G01	USBR	1100	369	6.	298	259	298
11N/24E-15R01	STANDARD OIL CO	2868	486	18.50	589	0	589
11N/26E-01F01	U S GOVT	579	209	В	348	375	168
11N/26E-16N01	U S GOVT	1000	740			5/5	100
11N/26E-19A01	U S GOVT	1200	1507			795	
11N/26E-20R01	U S GOVT	1227	1234		800	699	
11N/26E-27D01	U S GOVT	1117	2212			699	
11N/26E-34R01	U S GOVT	1200	1000	36	739	41	740
11N/27E-05Q01	U S GOVT 2	555	204	8	204	7.	169
11N/27E-26D01	U S GOVT 6	504	148	8	148		121
11N/27E-29C01	U S GOVT 7	552	321	6	293	144	128
11N/28E-17D01	U S GOVT &	495	144	B	147		106
11N/28E-18M01	U S GOVT	547	294				188
11N/28E-21L03	U S GOVT	440	+61	8	322		322
11N/28E-29N01	U S GOVT 11	435	110	8	110		322
12N/12E-22C01	STAPLETON, MARGARET	5280	231	6	162		162
12N/15E-08N01	EASTWOODSLUDWIG: C&M	3000	110	6	37		37

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER		OLOGY OF PAL AGUIFER	WATER LEVEL (FEET)		DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF Water
11N/19E-35N02			9.00			100				N
11N/20E-02H01	BSLT		225.00		08/09/1971	37				н
11N/20E-05R	BSLT		154.00			1809	69	4.0	26.2	I
11N/20E-11J	BSLT		90.00		05/20/1977	600	200	9.0	3.0	I
11N/20E-13D	HSLT		218.00		07/29/1977					I
					06/ /1953	2	20		0.1	
11N/20E-14N01			60.00			2	198	1.5	8.3	1
11N/20E-22R01			13.86+		10/05/1968	1650				H
11N/20E-22R02			40.00		09/23/1975	20	50	1.0	1.0	
11N/20E-24D01			65.00		04/18/1975	30	15	1.0	5.0	H
11N/S0E-31E01			14.00		12/ /1965	10	4	1.0	2.5	н
11N/20E-36B02			112.00			200				
11N/21E-01R02	BSLT		612.00		11/09/1965	5		2.0		U
11N/21E-07C01	BSLT		129.00		07/11/1967	600	210	4.0	2.9	I+H
11N/21E-18R01	BSLT		149.00		06/07/1977	1500	29		51.7	I
11N/21E-20A02	BSLT		320.00		05/25/1977	140	40	4.0	3.5	ŧ
					*******					ı
11N/21E-20002	HSLT		268.50		09/12/1977				22.0	
11N/21E-21J	BSLT		341.00	_	04/09/1977	440	20	4.0	55.0	I I
11N/21E-22K	BSLT		358.42	5	11/29/1977	200	,			
11N/21E-32C01			90.00		10/ /1961	15	6	1.0	2.5	H
11N/\$1E-36D	BSLT		169.00		05/24/1977	72	0	0.3	72.0	I
11N/22E-26K	BSLT									I
11N/22E-29B	BSLT		495.00		09/14/1968					I +H
11N/22E-29N01	•		365.00		07/ /1950	11	4	0.7	2.6	
11N/22E-34G01	BSLT		344.00		09/ /1950	11	0	0.6	10.8	нʻ
11N/24E-15R01	BSLT			D	04/02/1958					U
11N/26E-01F01	BSLT		100 50		08/16/1957				*-	
11N/26E-16N01	#SLT		180.50		09/10/199/					
11N/26E-19A01	BSLT			z						
	BSLT		AE1 00	v	11/06/1950					U
11N/26E-20R01			451.00	٧	11/00/1950					
11N/26E-27D01	BSLT									
11N/26E-34R01	BSLT		800.00		1958	348	9		38.7	₽
11N/27E-05Q0l			170.65		09/06/1950					
11N/27E-26D01			121.36		08/16/1950					
11N/27E-29C01	HSLT		130.84		01/09/1951					
11N/28E-17D01			105.11		08/24/1950	'				
11N/28E-18M01			158.00							
11N/28E-21L03	BSLT		45.10		05/07/1953	300				u
11N/28E-29N01			66.39		12/05/1950					ŭ
12N/12E-22C01			150.00		04/30/1973	42				H+I
12N/15E-08N01						125				

TABLE 32.--Records of selected wells--Continued

		ALTITUDE		CASING		DEPTH	DEPTH TO
		OF LAND	DEPTH	DIAM-		TO	FIRST
		SURFACE	OF WELL	ETER	DEPTH	AQUIFER	OPENING
LOCAL NUMBER	OWNER	(FEET)	(FEET)	(INCHES)	CASED	(FEET)	(FEET)
12N/15E-12B	CLARK. PATHICK	2280	383	6	21	9	21
12N/15E+13R01	MONDOR. WILLIAM	2200	329	16	50	52	50
12N/16E-03 SE	WINMILL. KEED L	2240	165	6	106	95	107
12N/16E-03D01	WILLIAMS. JACK E	5500	٤٥	Š	24	21	25
12N/16E-04R02	OKONESKI+ ROMAN	2115	278	8	73	ĩ ê	73
12N/16E-09C	ZEER+ VINCENT	2170	459	6	161	315	161
12N/16E-14C01	EVANS FRT	1980	806	12	302		302
12N/16E-15F01	HANSES. ARTHUR	1910	544	10	278	270	276
12N/16E-17J02	LARSUN∙ MELVIN R	2021	277	6	56	5.3	56
15N/19E-18K01	HERKE HROS	5114	343	5	315	109	55
12N/16E+18L01	HONDER+ WM	2115	18	36	18		 .
12N/17E-02J02	wILLARD. FLOYU	1400	92	6	40		
12N/17E-05N	GILBERT ORCHARD	1750	682	8	452	333	452
15N/17E-08L03	DAY, DONALD A	1600	20	2	20		
12N/17E-08N03	PONET. TTOAD E	1600	420	8	104	86	85
12N/17E+11A21	W VALLEY SCHOOL	1399	230	6	230		105
12N/17E-12 NE	THOMAS. ELLSWORTH	1580	183	5	39		39
12N/17E-12G01	FINCH, DARWIN	1277	20	2	19		
12N/17E-16D03	BROWN. ORAL	1520	384	10	312	325	312
12N/17E-16R01	BORTON. B S	1590	1078	6.62	940	706	940
15N/18E-01K01	ANDREWS. RAYHOND	1009	57	5	48		49
15N/18E-05E01	SCHREINER. LEROY	1066	405	6	376		46
12N/18E-04A01	HUNT R M	1125	12	60	12		6
12N/18E-04F05	MARTÍN: JAMES E	1139	96	5	42		42
12N/18E-07004	SHOENGARTH, ROBERT	1260	131	5	42		42
12N/18E-07K01	FAIRBANKS. H 8	1260	15	72	25		
12N/18E-11E02	WESTBURG. FRED	1200	183	6	165		165
12N/18E-17A01	MORTON 2+ CARRELL	1360	352	15		239	
12N/18E-27H01	HANSEN FRUIT 1	1120	1020	10	777	375	375
12N/18E-27N01	CAFFREY. DENNIS	1135	600				
12N/18E-31R01	ST CLAIR 2. RAY	1105	1573	8	1310	708	719
124718E-32101	MT ADAMS SEED 2	1130	1176	16	691	691	691
12N/18E-33A01	NYBERG, HERBERT	1185	953	12	630	617	630
12N/18E-35H01	PATTERSON DON	952	141	6	105		105
12N/19E-05M01	UNION GAP 1+ CITY OF	990	215	10	215		159
12N/19E-06	PALMER+ ROBERT E	988	50	2	20		
12N/19E-06M04	VALLEY FEEDING	990	315	12	300		
12N/19E-09J03	YBARRA: YGNACIO	990	91	5	58		58
12N/19E-10D01	EL PASO NAT GAS	981	30	6	30		
12N/19E-16P01	DNR	1200	500	8	500	28	457

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLOGY OF Principal aguifer	WATER LEVEL (FEET)	DATE WATER Level Measured	DISCHARGE (GALLONS PER MINUTE)	DRAN- DOWN (FEET)	PUMPING PERIOD (MOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
12N/15E-12B	BSLT	170.00	08/22/1977	10	208	1.0	0.0	н
12N/15E-13R01	BSLT	F	07/10/1939	900			11.3	I
12N/16E-03 SE	BSLT	111.00	07/09/1975	37				H
12N/16E-03D01	BSLT	36.00	07/08/1975	7				H
12N/16E-04R02	BSLT	130.00	07/12/1963	214	41	2.5	5.2	
12N/16E-09C	BSLT	132.00	11/26/1976	65		~-	 .	H
12N/16E-14C01	BSLT	117.50	05/29/1975	900	57	4.0	15.0	1
12N/16E-15F01	USLT	73.00	09/12/1945	360	49		7.3	I
12N/16E-17J02	BSLT	37.00	08/20/1966	150	50	1.0	3.0	H•I
15W/19E-18K01	BSLT	23.50+	02/20/1946	225	139	4.0	1.6	Ι.
12N/16E-18L01		3.00					**	H
12N/17E-02J02		55.64	07/06/1951					Ü
12N/17E-05N	BSLT	298.00	09/03/1974	120				н
12N/17E-08L03		11.00	10/28/1961					
12N/17E-08N03	BSLT	32.00	02/23/1970	375	50	16.0	7.5	I
12N/17E-11A21		10.00	08/ /1966	90	77	5.0	1.2	H+I
12N/17E-12 NE		8.00	05/01/1974	30				Ħ
12N/17E-12G01		6.00	04/12/1974	15				,s
12N/17E-16D03	BSLT	57.80+	05/06/1952	650 F				1.5
12N/17E-16R01	#SLT	F	02/01/1945	450				I
12N/18E-01K01		4.83	01/30/1974	50				н 1
12N/18E-02E01		1.16+	07/26/1951	_56 F				1
12N/18E-04A01		6.00		200	18		11.1	
12N/18E-04F05		22.00	10/25/1974	25				H
12N/18E-07D04		22.00	10/16/1975	12				н
12N/18E+07K01		12.00	1938					1
12N/19E-11E02		105.00	07/25/1952	60	65		0.9	H
12N/18E-17A01	BSLT	117.00	02/ /1957	600	15	**	40.0	i
12N/18E-27H01	BSLT	230.00	03/ /1968	2100	310	7.0	6.8	i
12N/18E-27N01	#SLT	220.00	02/ /1956	360	78	5.0	4.6	ı
12N/18E-31R01	BSLT	209.00	04/ /1965	1100	244	4.0	4.5	I I
12N/18E-32H01	HSLT	216.00	02/ /1965	695	81 126	4.0	8.6 11.1	İ
12N/18E-33A01	#SLT	209.00	04/ /1969 09/18/1971	1400	150	4.0		Ĥ
12N/18E-35H01		31.10		450	10		45.0	P
12N/19E-05M01	••	10.00	07/22/1949	450	10		73.0	·
12N/19E-06		8.33	05/18/1974	20				н
. 12N/19E-06M04		6.00	09/01/1966	570	170	8.0	3.4	C+H
12N/19E-09J03		28.00	09/11/1975	10				н
12N/19E-10D01		6.00	08/ /1971	50	_4	4.0	12.5	H
12N/19E-16P01	BSLT	158.50	07/01/1974	600	79	13.5	7.6	I

TABLE 32.--Records of selected wells--Continued

		ALTITUDE OF LAND	DEPTH	CASING DIAM-		OEPTH To	DEPTH TO
		SURFACE	OF WELL		DEPTH		OPENING
LOCAL NUMBER	OWNER			ETER		AGUIFER	
COCAL MONDER	OANER	(FEET)	(FEET)	(INCHES)	CASED	(FEET)	(FEET)
12N/19E-21P01	STARK WEST ORCH	1000	360	8	65	119	65
12N/19E-26R01	FUCHS. VERN H	1060	534	10	455		455
12N/19E-34801	DART, H J	812	14	48	12		6
12N/19E-36G02	EAKS, ARTHUR	1000	203	6	86		86
1SN/19E-36K01	MONEY. HAHOLD E	940	150	6	107		107
12N/20E-03G01	YAKIMA LAND 1	1166	314				
12N/20E-04	YAKIMA LAND 4	1266	583			486	
12N/20E-09C01	HRADFORD .	1155	623			386	
12N/20E-09P01	ALLWARDT: EMIL	1185	809			752	730
12N/20E-09P02	ALLWAROT 2. MONALCARL	1160	965	8	920	920	920
12N/20E-10G01	HIEBERT. CLAVE H	1200	136	5	30		31
15N/50E-10H0S	NIPPS: W F	1200	96	5	39		39
12N/20E-12A01	DURAND. LEONARD	1500	48	5	42		42
15N/S0E-5001	KUESTER. PAUL	1500	460	6	347	72 .	270
15N/S1E+10H01	ESTAMO+ ELSIE	2000	46	6	41		41
12N/21E-17P01	MARTINEZ LVST	1400	800	6	689	689	393
12N/21E-19H01	CROM+ ORVILLE R	1410	1713	6.25	1138	1450	357
15N/51E-50b05	GRISWOLD 2	1+20	1061	8	946	886	946
15W\S1E-51C01	MONTGOMERY. TOM	1575	580	6	472	466	472
15N/51E-51F03	LAND DEVLPHT 2	1480	448	8	148	7	148
12N/21E-21P01	LAND DEVLPMT 1	1445	281	6	264	10	228
12N/21E-25001	FINES. MERRITT	1640	755	8	480	167	480
12N/21E-27D01	GRISWOLD+ P E	1480	375	12	221	12	221
12N/22E-15G01	CHRISTEN	2940	128	6	20		20
15N/55E-5AB01	CHANGALA+ STEVE	1800	1270	10	730	721	730
12N/23E-13G01	JOLLY. E	1240	230	6	178		138
12N/23E-18E01	MARLEY 4. CHARLES L	1730	206	15	198	20	55
15N/53E-51N01	SPAULDING. ED	1800	1517	6	1146	1211	500
12N/24E-05A01	GRASSLAND SEED	1400	832	12	672	655	672
12N/24E-30A01	HOBERT 2: E.L.&V.E.	1080	1280	8	778	778	778
12N/25E-01A01	U S GOVT	708	287	6	287	105	250
12N/25E-01L12	U S GOVT	670	150	6	150		118
12N/25E-12H01	U S GOVT	694	302	6	302	111	868
12N/25E-15G01	COLD CRK DEVLP	630	600	10	548		
12M/25E-23K01	U S GOVT	600	265	8	168	109	169
12N/25E+26M01	U S GOVT	610	2000	8	1314	547	100
12N/26E-03A13	U S GOVT	683	302	8	302	60	243
12N/26E-07001	U S GOVT	704	75			*-	
12N/26E-07Q01 12N/26E-19K01	U S GOVT	692	325	8	324		295
1 CH. COC_13VA1	U S GOVT	629	330	. 8	440	5	185

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLOGY OF PRINCIPAL AUDIFER	WATER LEVEL (FEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	OPAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USË OF Water
12N/19E-21P01	HSLT	183.00	10/02/1968	560	87	4.0	7.6	I+H
12N/19E-26R01		230.00	06/04/1969	350	60	8.0	5.8	1
L2N/19E-34B01	_ 	5.50	04/30/1955	200	6		33.3	
12N/19E-36G02		118.00	05/05/1971	50	7	1.0	2.9	H+I
12N/19E-36K01		85.00		50	5		4.0	
12N/20E-03G01		26.00+	1891	300 F				
12N/20E-04	BSLT	80.00	1893					
12N/20E-09C01	63()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		406 F		*		1
		, F		297 F				Ĩ
12N/20E-09P01			11/15/1977	700	146	4.0	4.8	i
12N/20E-09P02	#\$LT	1.00	11/12/14//	700	140	7.0	4.0	*
12N/20E-10G01		74.00	05/01/1974	25				н
12N/20E-10H02		50.00	09/24/1974	20				н
12N/20E-12A01		14.00	04/14/1976	30				H
12N/20E-29D01	BSLT	84.00	04/01/1966	60	13	5.0	4.6	1
12N/21E-10H01		8.58	08/15/1973	15	1	1.0	15.0	н
12N/21E-17P01	BSLT	210.00	05/15/1968	1040		4.0	7.4	I.H
12N/21E-19H01	ASLT	48.00	08/01/1948	300	170	4.0	1.8	I
12N/21E-20P02	HSLT	211.00	12/ /1968	600	125	4.0	4.8	Ī
12N/21E-21C01	RSLT	450.00	05/27/1977	12	125	1.0	0.1	I.H
12N/21E-21L03	#SLT	146.00	11/13/1975	250	85	3.5	2.9	1
15W/EIC-EICO3	D3E1	140.00	11/13/1//3	230	•••	3.3	2.07	-
12N/21E-21P01	ASLT	86.00	07/19/1974	100	121	4.0	0.8	1
12N/21E-25D01	BSLT	50.00	03/25/1966					I
12N/21E-27D01	BSLT	102.00	03/04/1965	250	88	3.0	2.8	I
12N/22E-15G01		92.00	04/15/1971	6			•	н
12N/22E-29801	BSLT	263.00	09/30/1975	700	95	5.0	7.4	I
12N/23E-13G01		114.00	08/08/1968					H+I
12N/23E-18E01	BSLT	27.00	12/08/1967	400	124	3.0	3.2	ī
12N/23E-21N01	BSLT	644.00	02/08/1967	195	iii	8.0	1.6	I,S
12N/24E-05A01	HSLT	392.00	04/20/1974	2250	48	6.0	46.9	i
12N/24E-30A01	BSLT	116.00	12/18/1975	3350	106	24.0	31.7	i
ISNYE4E-3UAUI	BSLI	110400	12/10/17/3	2220	100	54.0	311,	•
12N/25E-01A01		285.00	08/30/1944	70				
12N/25E-01L12		ι		100				
12N/25E-12H01		(-	95				
. 12N/25E-15G01								
12N/25E-23K01	BSLT	188.00	10/20/1956					
12N/25E-26M01	BSLT	109.75	09/30/1957					**
12N/26E-03A13)	75				
12N/26E-07D01		Č			~-			
12N/26E-07Q01		289.00	09/08/1948					
12N/26E-19K01		198.00	10/22/1956					U
	•							

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	UWNER	ALTITUDE OF LAND Surface (FEET)	DEPTH OF WELL (FEET)	CASING DIAM- ETER (INCHES)	DEPTH Cased	DEPTH TO AQUIFER (FEET)	DEPTH TO FIRST OPENING (FEET)
12N/26E-22L01	U S GOVT	673	309	8	315	5	284
12N/26E-25Q01	U S GOVT 1	620	200	9	200		169
12N/27E-19002	U S GOVT	559	253				150
12N/27E-31Q01	U S GOVT	5 15	160				110
13N/14E-29G01	HAUCKRVANFLECK	5000	65	6	54		•::
13N/14E-30801	MARSHAL, JUHN	4640	40	6	39		
13N/16E-24H01	PYRAMID ORCH L	1942	1466	10	920	540	558
13N/16E-34N01	HAMMOND. GARY	2240	145	·š	20	1	20
13N/17E+01H01	WATKINS. HEPHERT P	1670	429	š	63	51	63
13N/17E-04D01	HAAS INC	1710	201	8	200	51	12
13N/17E-04J01	HERKE. JUSEPH P	1700	519	12	338	339	338
13N/17E-10A01	dogle. Elza	1600	158	6	22		53
13N/17E-19401	PYRAMID ORCHARD	1750	800	6	800		208
13N/17E-20801	MARLEY ORCHARDS	1650	375	8	224		224
13N/17E-20P01	MELTON JH	1600	145	8	120		120
13N/17E-22E01	RAINE, MERTON G	1600	347	6	123	123	123
13N/17E-24001	MILLEM	1400	114	š	27	ží	27
13N/17E-24G03	LANGE: HAL	1360	130	5	58		58
13N/17E-26F02	JOHNSON. TED	1300	70	6	63		
13N/17E-28E01	MTNVIEW SCHOOL	1600	314	6	314		279
13N/17E-31J02	CAMPRELL. ROY D	1740	176	5	25		25
13N/17E-31G01	BIERLY. DUNALU K	1720	400	ล์	314		110
13N/17E-32C01	MASTEL - MIKE	1600	345	ě	151		50
13N/17E-32F01	BURUP. HHENT L	1720	245	5	5.1		_
.13N/17E-36E01	BRUNDAGE . H F	1400	260	8	138		53 138
13N/18E-0+K01	SUNTIDES	.1<00	225	8	83		63
13N/18E-04R01	BPOWN TAYER WTR	1445	320	8	220	30	93
13N/18E+05 NE	LIEN	1220	36	5	34	30 	220 34
13N/18E-06801	NICHOLLS+ JEHNY R	1328	35 55	Š	39		39
13M/18E-09C01	WHORTON. DRVIE L	1100	. 20	2	20		39
13N/18E-09K02	CRABA+ J H	1450	12	36	12		•
13N/18E-14H02	J HAAS INC	1100	400	10			3
13N/19E-18K01	NOB HILL WTH 3	1650	105l		319	349	319
13N/18E-19L01	DRUSE - WALLACE E	1400	186	15	554	442	432
13N/18E-20H01	J MARSHALL COST	1320	56	8 5	30 114		119 31
13N/19E-22C01	ENGLEWOOD CHRCH	1292	310	6	200		110
13N/18E-24JU2	YAKIMA 3+ CITY OF	1059	527	6	526		110
13N/18E-25H01	OUMSEFOSSHAGE. H.C.ED.H.	1060	62	8	529 60		60
13N/18E-27N01	YAKIMA. CITY OF	llis	332	8	332		30
13N/18E-28A01	PACIFIC FRUIT	1160	95	A	93		245

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLOGY OF Principal adulfer	WATER LEVEL (FEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
12N/26E-22L01		284.49	07/17/1948					
12N/26E-25Q01		159.29	12/05/1950					
12N/27E-19D02		159.00						
12N/27E-31Q01		113.00						
13N/14E-29G01		18.00	02/20/1974	12	27	0.5	0.4	н
13N/14E-30801		18.00	06/25/1974	20	5	0.5	4.0	н
13N/16E-24H01	#SLT	142.00	06/03/1967	600	368	100.0	1.6	I + H
13N/16E-34N01	HSLT	33.00	08/01/1974	25				н
13N/17E-01H01	HSLT	263.00	07/29/1976					н
13N/17E-04D01	HSLT	0.00		500	52		9.6	
13N/17E-04J01	#SLT	41.54+	04/30/1969	450 F	 .			1 · H
13N/17E-10A01		55.00		64				
13N/17E-19A01		J50.00	04/29/1968	90		24.0		I + H
13N/17E-20H01		248.00	03/22/1961	120	72		1.7	
13N/17E-20P01		54.00	12/17/1968	158	58	5.0	2.7	I
13N/17E-22E01	BSLT	295.00	06/24/1971	11	4	1.0	2.8	н
13N/17E-24D01	BSLT	36.00	03/10/1975	9				н
13N/17E-24G03		76.25	02/13/1976	10				н
13N/17E-26F02		4.62+	09/10/1975	20 F				н
13N/17E-28E01		6.00	02/23/1950	75	40	4.0	1.9	H•I
13N/17E-31J02		116.00	03/16/1976	10				н
13N/17E-31Q01		119.50	01/15/1962	160	114		1.4	
13N/17E-32C01		5.00	04/11/1967	175	133	10.0	1.3	_ i
13N/17E-32F01		167.00	02/02/1975	2.0				н
13N/17E-36E01		85.00		115				
13N/18E-04K01		3.67	02/03/1966	580	130	4.0	4.5	,
13N/18E-U4R01	HSLT			300				P
13N/18E-05 NE		10.00	04/17/1974	50				н
13N/18E-06801		4.00	09/25/1975	50				н
13N/18E-09C01		6.00	05/14/1975	10				н
13N/18E-09K02	••	6.50	04/27/1959	70	3		23.3	
13N/19E-14H02	BSLT	54.00	05/25/1969	40	69	12.0	0.6	N
13N/18E-18K01	HSLT	277.00	05/13/1969	2624	4	12.0	629.3	P
13M/18E-19L01	. 	64.00	03/22/1968					P
13N/19E-20H01		7.00	08/04/1975	30				н
13N/18E-22C01	••	90.00	01/05/1965	100	60	3.0	1.7	Z
13N/18E-24J02		45.00	01/14/1966	325	25	5.5	13.0	N
13N/18E-25H01		25.00	06/15/1965	550	5	4.0	146.7	Z
13N/1BE-27Nul		16.00	09/26/1973	500	62	10.0	8.1	I
13N/18E-28A01		22.00	07/24/1959	200	10		20.0	

TABLE 32.--Records of selected wells--Continued

		ALTITUDE		CASING		DEPTH	DEPTH TO
		OF LAND	DEPTH	DIAM-		TO	FIRST
		SURFACE	OF WELL	ETER	DEPTH	AQUIFER	OPENING
LOCAL NUMBER	OWNER	(FEET)	(FEET)	(INCHES)	CASED	(FEET)	(FEET)
13N/18E-29N01	FOHLER+ DUN	1200	90	5	30		30
13N/18E-30A01	OLSON. GEORGE E	1220	235	6	153		153
13N/18E-30C01	HEDDOE: EUGENE E	1300	137	5	32		33
13N/19E-31L01	JOHNSON: LEONARD	1300	140	6	61		61
13N/18E-33L01	HESS. HAYMOND A	1145	22	4	11		
13N/18E-35F01	TRONTECH CURP 1	1049	290	8	218		218
13N/18E-36M02	NELOYON: HUWARD	1042	80	5	58		58
13N/19E-07	YOCHAM+ CAROMEL L	1000	21	ž	20		
13N/19E-15L01	WOLFE+ JACK A	1200	435	ā	435		
13N/19E-16C01	M YHTOROG •YOHAH	1045	497	10			275
				••			2,3
13N/19E-16F01	wILLIAMS. CLARENCE	1100	203	6	186		186
13N/19E-20D01	WA ST HHY	1020	145	8	121		46
13N/19E-22J01	H BURMAN CONSTR	1200	131	5	24		24
13N/19E-23	H BURMAN CONSTR	1200	116	5	25		25
13N/19E-24	CARPENTER. ROY	1360	350	6	196		196
13N/19E-24801	YAKIMA SHEEP CO	1640	756	10	710		710
13N/19E-24F01	WARRIOR. FLOYD	1360	425	8	341		341
13N/19E-24M01	SCHMIDT. HARRY	1260	340	Š	68		38
13N/19E-26 SH	wINGERTER, FELIX J	1050	77	5	35		35
13N/19E-26N01	BALHOLM. H L	1030	96	5	26		26
13N/19E-28801	WA ST PPKS 1	1015	118	8	116		70
13N/19E-29R01	YAKIMA. CITY OF	1000	60	12	60		ía
13N/19E-30H01	MEACHAM, D M	1025	31	2	31		
13N/19E-31803	HANSEN FRT		225	8	225		135
13M/19E-35H01	MOXEE SD90	1035	150	ě	114		114
13N/20E-29D01	MOXEE SO90	1250	u co				
13N/20E-30	UILLEY. NEIL	1550 1400	590 205	10	446	438	446
13N/20E-30 SE	MILHAM, GAROLD R	1350	300	5			
13N/20E-30P02	LAHSON. R L	1240	96	5	41		41
13N/21E-34H02	MARTENEZ LVSTK	1240			25		26
			1033	15	693	57	693
13N/24E-25E01	U S GOVT	900	777	10	625	625	625
13N/24E-27K02	FRITTS. DAVID A	1060	865	8	545	408	545
13N/24E-34 NE	TRAINUR, H C	1000	510	8	500		360
1345-34801	BUPKE, DELHERT	960	87	8	83		
13N/24E-36001	u 5 GOVT	. 906	1092	6	963	963	963
13N/25E+30G01	MCGEE CHESTER L	829	1110	8		440	
13N/25E-33D01	U S GOVT	7+6	540	6		680	
14N/14E-28H03	USFS	2500	55	8	54		. 40
14N/15E-03K01	GAME DEPT	2700	34	6	38		. 40
14M/16E-12H01	ALLAN, LESLIE T	2740	132	6	132	680	
	= : :			•	132	344	

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHOLUGY OF Principal aguifer	WATER LEVEL (FEET)	DATE WATEP Level Measured	DISCHARGE (GALLONS PER MINUTE)	DPAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
13N/18E-29N01		8.25	06/12/1975	50				н
13N/19E-30A01		37.00		272	43		6.3	
13N/18E-30C01		17.00	12/03/1973	28				н
13N/18E-31LU1		84.00	05/23/1973					.н
13N/19E-33L01		12.00	07/16/1947	100	ð	4.0	12.5	H·I
13N/18E-35F01		32.00	07/01/1968	120	158		0.8	1
13N/19E-36M02		17.50	01/30/1976	20	-			н
13N/19E-07		3.00	03/20/1974					Ħ
13N/19E-15L01		230.00	10/16/1965	300	50	4.0	6.0	I +H
13N/19E-16C01		224.00	04/03/1964	430	85	4.0	5.1	I
13N/19E-16FU1		90.00	03/04/1966	168	73	2.5	2.3	н
134719E-20U01		11.00	02/04/1971	123	97	24.0	1.3	I
13N/19E-22U01		59.00	05/13/1975	15				H
13N/19E-23		65.00	06/28/1974	15				H
13N/19E-24		. 550.00	01/04/1968	60		1.0		н
13N/19E-24801		374.00	02/18/1967	400	126	4.0	3.2	1
13N/19E-24F01		340.00	04/12/1965	30	45	2.0	0.7	н
13N/19E-24M01	••	279.00	09/10/1975	10				н
13N/19E-26 SW		4.17	12/20/1973	25				н
13N/19E-26N01		9.00	08/27/1974	40 ,				н
13N/19E-28801		5.00	01/18/1962	76	105		0.7	
13N/19E-29R01		11.00	05/21/1965	240	30	6.0	8.0	PIN
13N/19E-30R01	••	1H.00	04/05/1976	10				н
13N/19E-31003	• •••	18.00		250	144		1.7	
13N/19E-35HU1		12.00	0H/ /1956	100	44		1.2	
13N/20E-29D01	HSLT	339.00	04/22/1970	275	165	9.0	1.7	1+H
13N/20E-3U		175.00	10/01/1973	10	10	0.5	1.0	H
13N/20E-J0 SE		238.00	03/18/1974	20				н
13N/20E-30P02		37.00	03/18/1976	10				H
13M/21E-34H02	oSLT	756.00	10/20/1971					I+H
13N/24E-25E01	HSLT			7500 F				
13M/24E-27K02	SHLE	60.00	11/11/1963					H+I
13N/24E-34 NE	HSLT	220.00	07/26/1974	300				H+I
13N/24E-34R01		44.00	03/18/1975	15	27	4.0	0.6	H
13N/24E-36D01	HSLT		F 11/ /1922					Z
13N/25E-30G01	BSLT	212.52.	04/ /1927	1375 F				I+H+S
13N/25E-33D01		365.00	03/ /1943					U
14N/14E-28H03		13.00	12/15/1961	55	30	8.0	0.7	H
14N/16E-U3K01		31.00	02/ /1949	20		4.0		H
14N/15E-12H01	HSLT	82.00	01/13/1972	35				н

TABLE 32.--Records of selected wells--Continued

·		ALTITUDE		CASING		DEPTH	UEPTH TO
		OF LAND	DEPTH	DIAM-		To	FIRST
LOCAL ANGIOES		SURFACE	OF WELL	ETER	DEPTH	AQUIFER	OPENING
LOCAL NUMBER	OWNER	(FEET)	(FEET)	(INCHES)	CASED	(FEET)	(FEET)
14N/16E-13K01	KELLEP. RICHARD	5010	*04	4			
14N/16E-14J01	KOEMKEL	2400	490	8	490	380	
14N/15E-24	HUMPHREY	2140	235	8	71		71
14N/16E-24C01	LOECHOLT. HORST		652	6	45	147	45
14N/16E-24K01	KELLER FHT	2170	365	6	1 8 0	515	180
	NECECH FAI	2105	870	. 8	270	250	270
14N/17E-03H01	RIGGLE. O D	1535	30	6	21		
14N/17E-04H02	NACHES 2. CITY OF	1500	1000	Ä	746	738	746
14N/17E-07H01	HARNES+ HEN	1960	324	6	20	13	20
14N/17E-11E61	ALLAN HHOS	1400	148	10	143	13	
14N/17E-16E01	ERICKSEN+ J T	900	500	6	500		45
1.444175 13461	-	700	300	6	500	39	77
14N/17E-18A01	MILLER+ HAHOLD H	1930	45	6	65		65
14N/17E-20K03	KNUTSON+ JOE	1900	46	5	55		56
14N/17E-27g01	ADAMS+ HAROLD	1725	175	6	71	34	71
14N/17E-28A01	TIETON. GEORGE	1810	140	10	30		30
14N/17E-28C01	CASTEEL. CAPL	1700	160	6	124		110
14N/17E-28F02	ROWLAND	1702	57				
14N/17E-29J01	HARGRAVE . HUGH C	1769	¥6	6	96		
14N/17E-30K01	TJARNBEHG HHOS	2100	564	8			
14N/17E-31D02	CHRISTENSEN. JAMES	2020	259	6	283	451	283
14N/17E-32G01	DETLOFF. WILLIAM	176G	210	6	152 100	140	152 100
14N/17E-32001	PIERCE. F L	1600	333				
14N/18E-19F	FOSSOM ONCH 1		337	B	83	147	A 4
14N/18E-19G01	ASHLEY. PAUL	1610	1009	10	645	641	645
14N/18E-27L02	HOVE TAVE	1420	96	5	30		37
14N/18E-27P03	SAMMAR INC	1339	190	6	30		30
, , , , , , , , , , , , , , , , , , , ,	JAMMAR INC	1400	250	5	30		30
14N/18E-29	WEST, LELAND F	1317	160	5	80		
14N/1BE-29K01 .	CHAIG. PALPH	1400	56	5	42		81
14N/18E-29L01	E PURVIS CONSTR	1300	111	5	78		42
14N/18E-29001	STEVENSON: KAROL	1314	141	5	60		78
14N/18E-30H01	DALTON+ CLARENCE W	1900	- 61	5			80
	•	1400	01	5	80		
14N/18E-32 NE	CURTIS. GALE E	1300	35	5	34		
15N/15E-11 NE	GORDON: E D	2125	61	8	61		42
15N/16E+34	YAKIMA 1+ CITY OF	3600	72	4.50	72		
15N/17E-31H02	HUSSELL. L	2400	31	6	30		
15N/17E-33Q01	Ł₩ING: JAMES	1590	02	ě	59		59
16N/14E-01J01	USFS						
16N/15E-06N01	ELTON+ DON	2240	200	6	42		42
16N/15E-17K01	FALLON CURTIS J	4000	60	8	Sø		35
16N/15E-28D01	BELCHER. DONALD	5155	127	6	22	15	23
16N/15E-34D01	· · · · · · · · · · · · · · · · · · ·	2400	60 ·	6	5a		
1044 175-24001	KUNTZ. LEO R	1860	9	12	4		3
17N/13E-36801	OBMICTON AND A						
17N/14E-23C01	ORMISTON+ UNVILLE	400	160	6	100		101
17N/14E-26K01	HALL+ GENE	2 ⇒ 4 0	54	6	53		
17N/14E-35	TRACEY 2. JUSEPH	2340	64	6	31		31
	HUND+ FORKA H	2300	lυ	6			

TABLE 32.--Records of selected wells--Continued

LOCAL NUMBER	LITHULOGY OF PRINCIPAL AQUIFER	WATER LEVEL (PEET)	DATE WATER LEVEL MEASURED	DISCHARGE (GALLONS PER MINUTE)	DRAW- DOWN (FEET)	PUMPING PERIOD (HOURS)	SPECIFIC CAPACITY (GPM/FT)	USE OF WATER
14N/16E-13K01	HSLT	240.00	08/19/1977	300				I
14N/16E-14J01		120.00	08/01/1954	60	80	4.0	0.8	H+I+S
14N/16E-24	HSLT	43.00	11/ /1947	15	217		0.1	
14N/16E-24C01	HSLT	240.00	10/04/1977	45				н
14N/16E-24K01	BSLT	240.00	06/10/1977	125				1
14N/17E-03H01		0.00	03/18/1976	30	10	0.5	3.0	н
14N/17E-04H02	HSLT	53.63	02/20/1952	845	535		1.6	Þ
14N/17E-07H01	BSLT	244.00	06/07/1974	15				н
14N/17E-11E01		4.75	07/15/1964	∠ 50	119	2.5	2.1	N
14N/17E-10E01	85LT	365.00		140	49	15.0	2.9	I+H
14N/17E-18A01		30.00	08/23/1952	200	40	4.0	5.0	I+H+5
14N/17E-20K03		20.00	10/01/1975	50				H
14N/17E-27G01	BSLT	A2.00	12/10/1968	45		2.5		Н
14N/17E-28A01		F		100	17		5.9	
14N/17E-28C01		5.00	07/05/1973	150				1
14N/17E-28F02		11.00	05/03/1975	25	20	0.5	1.3	н
14N/17E-29J01		10.33	06/ /1953	60	4		13.6	
14N/17E-30K01	#SLT	232.00	11/26/1969	65	160	1.0	0.4	ī
14N/17E-31D02	BSLT	163.00	03/17/1976	75	42		0.8	Z
14N/17E-32G01		20.00	06/02/1962	200	130		1.5	
14N/17E-32001	#SLT	36.00	11/11/1975	450				t
14N/18E-19F	HSLT	239.00	06/13/1977	000	95	3.6	6.3	ī
14N/18E-14G01		64.00	09/23/1975	5				н
14N/19E-27L02		45.00	11/13/1973	10	1	1.0	10.0	H
14N/18E-27P03	·	150.00	07/29/1974	50	_ 			н
14N/14E-29		51.00	04/04/1974	30				н
14N/18E-24K01		25.00	11/20/1975	20				н
14N/18F-29L01		52.00	07/16/1975	20				н
14N/18E-29Q01	···	73.00	11/18/1975	10				н
14N/18E-30H01		50.00	06/02/1974	15	5		7.5	н
14N/18E-32 NE		28.00	05/01/1975	20				н
15H/15E-11 NE		15.00	10/30/1956	75	20	5.0	3.8	I
15N/16E-34								U
15N/17E-31R02		3.25	05/07/1959	60	12		5.1	
154/176-33401		21 . 50 ·	12/31/1975	30	53		1.3	H+Z+D
16N/14E-01J01		17.83	02/ /1948	20	148	15.0	0.1	ρ
16N/15E-06N01	•	4.00	06/01/1966	100	10	2.0	10.0	н
15N/15E-17K01	HSLT	16.00	04/22/1975	75				н
15N/15E-28001		34.00	UH/25/1975	25				н
164/15E-34D01	••	6.00	06/25/1966	75	1	1.0	75.0	H+I
17N/13E-36HD1			40.404.4125					
17N/14E+23C01		100-00	03/20/1975	43				H
17N/14E-23CU1	==	. 26.00	08/27/1975	50				-
17N/14E-25NU1		7.00	08/27/19/5	10				н
11~/145_73		3.00						H • I

			·	
		•		
•				
		,		
·				

	·	

!			i	
:				